Industrial Magmeters

What is a Magmeter?

Magmeter is a volumetric flow meter that measures the flow of conductive fluid in a closed pipeline. Magmeter is also called electromagnetic flow meter, magnetic flow sensor, magnetic flow meter, etc. Magmeters is based on electromagnetic induction technology and outputs 4-20mA and other signals. Used in wastewater treatment, sewage treatment, chemical plants, etc.

Advantages of Magmeters

  • The cost is relatively low.
  • No mechanical parts such as rotors or gears.
  • There is almost no pressure loss.
  • There are a variety of materials for the lining and electrode to meet the measurement of various corrosive fluids.
  • Various installation forms are available: integrated, split, plug-in, sanitary, high-pressure, etc.

Structure of Magmeter

First, let us look at the structure of the magmeter.

The structure of electromagnetic flowmeter is mainly composed of magnetic circuit system, measuring catheter, electrode, shell, lining and converter.

Magnetic flow meter principle

The electromagnetic flowmeter is made according to Faraday’s law of electromagnetic induction. It is used to measure the volume flow of conductive liquid.

Faraday’s law of induction (referring to the induction of an electric potential inside the conductor when the conductor passes through a magnetic field) is the basic principle of electromagnetic flowmeter measurement.

This measurement principle can be applied to conductive fluids.

The fluid flows into a pipe whose magnetic field is perpendicular to the direction of the fluid, and the electric potential induced in the fluid can be measured using two symmetrically arranged electrodes.

The signal voltage UE is proportional to the magnetic induction intensity B, the electrode spacing D and the average fluid velocity v.

Because the magnetic induction intensity B and the electrode spacing D are constant. Therefore, the signal voltage UE is proportional to the average flow velocity v.

The equation used to calculate the volume flow rate shows that the signal voltage UE is linearly proportional to the volume flow rate.

The sensed signal voltage is converted into the graduation in the converter, analog and digital output signals.

Magmeter flowmeters measure the velocity of conductive liquids (such as water, acid, caustic and slurry) in the pipeline. When measuring deionized water, the minimum conductivity of the medium is 20uS/cm. For most liquids, the minimum conductivity required for measurement can be 5uS/cm.

Magmeter is mainly used in the following areas:

  • Measure clean water, sewage, domestic water, raw water;
  • Various acid, alkali, salt and other solutions;
  • Mud, mineral pulp, paper pulp, and food liquids, etc.;
  • It is widely used in metallurgy, papermaking, water treatment, chemical industry, light industry, textile, food and beverage, catering, agricultural irrigation, hydropower station, oil production, electric power and mining industries.

Extended Reading: Guide: Magnetic Flowmeter Installation

Magmeter liner selection should be selected according to the corrosiveness, abrasiveness and temperature of the measured medium.

  • Hard/soft rubber is resistant to general weak acid and alkali corrosion. Temperature resistance is 65℃. Soft rubber has abrasion resistance.
  • Polytetrafluoroethylene (PTFE) is almost resistant to strong acid and alkali corrosion except hot phosphoric acid. The temperature of the medium can reach 130℃. But it is not resistant to wear.
  • Polyurethane rubber has good wear resistance. But it is not resistant to acid and alkali corrosion. Temperature resistance is also poor. The medium temperature is less than 65°C.
Liner MaterialsFunctionsApplications
Hard rubber1. It is resistant to hydrochloric acid, acetic acid, oxalic acid, ammonia, phosphoric acid and 50% sulfuric acid, sodium hydroxide, and potassium hydroxide at room temperature.
2. Avoid strong oxidants. 
1, below 70℃
2. General acid, alkali, and salt solutions. 
Soft rubber1. It has good elasticity and good wear resistance;
2. It is resistant to the corrosion of general low-concentration acids, alkalis, and salt media, and is not resistant to the corrosion of oxidizing media. 
1. Below 70℃;
2. Measure general water, sewage, mud, ore slurry
Polytetrafluoroethylene (PTFE)
Modified polytetrafluoroethylene (PFA)
1. The material with the most stable chemical properties in plastics. It can withstand boiling hydrochloric acid, sulfuric acid, nitric acid and aqua regia, as well as strong alkalis and various organic solvents;
2. Poor abrasion resistance and adhesion. 
1.-40℃~+130℃C(PTFE),
-40℃~+160℃(PFA);
2. Strong corrosive media such as acid and alkali;
3. Sanitary media. 
PO1. It can withstand hydrochloric acid, acetic acid, oxalic acid, ammonia, phosphoric acid, sulfuric acid, sodium hydroxide, and potassium hydroxide at room temperature.
2. It can withstand concentrated alkali and various organic solvents. 
1. Below 70℃;
2. General acid, alkali, and salt solutions;
3. General water, sewage, mud, mineral slurry. 
CeramicsWear resistance, high temperature resistance, corrosion resistanceBelow 200℃

1.Environmental conditions:

Magmeter flowmeter, especially the flowmeter with intelligent LCD screen. The installation position should avoid direct sunlight as much as possible. The ambient temperature should be between 5℃~55℃.

2.Avoid strong interference sources

Choose a place where there is no strong electromagnetic field radiation to install the flowmeter.

Avoid devices that can easily cause electromagnetic interference, such as motors, transformers, and frequency converters.

The measurement principle of the flowmeter is based on Faraday’s law of electromagnetic induction, the original
The initial signal is very weak, less than millivolt.

If there is strong electromagnetic field radiation near the flowmeter, it will affect the accuracy of the measurement and even fail to work normally.

3.Magmeter straight run

Pay attention to avoid eddy current generating parts as much as possible. Such as various valves, elbows, bypasses, etc.

Try to extend the straight pipe section upstream and downstream of the flowmeter. Install a rectifier tube if necessary.

Ensure that the upstream straight pipe section of the flowmeter must be at least 5 DN (measurement pipe diameter). The downstream is guaranteed to be more than 2 DN.

4.The conductivity of the liquid must be uniform and stable

Do not install the flowmeter in a place where the conductivity of the fluid to be measured is extremely uneven.
If different media are injected upstream, the conductivity will be uneven and will affect the measurement.

In this case, it is recommended to move the injection port downstream.

If it must be injected from upstream, it should be as far away from the flowmeter as possible. Generally, it is better to keep a distance of more than 20 DN. To ensure that the liquid is fully mixed and uniform.

5.Keep the electrode axis level

The plane of the intermittent measuring electrode must be kept level. This prevents short-term insulation between the two electrodes due to air bubbles.

6.Magmeter grounding rings

Since the induction signal of the electromagnetic flowmeter is very weak, it is susceptible to noise. Therefore, the reference potential of the sensor and the converter must be the same as the measured liquid, and be grounded together.

The purpose of installing grounding rings or grounding electrodes on both sides of the electromagnetic flowmeter is to establish the equipotentiality between the flowmeter casing and the liquid.

Ordinary metal pipe (generally no need to install grounding ring)

When the pipeline itself is well grounded, the grounding wire can be omitted, but the casing must be connected to the liquid through the grounding wire equipped with the flowmeter.

Insulated pipes (plastic pipes, rubber-lined pipes, etc.)

A grounding ring (or grounding electrode) should be installed at both ends of the sensor and the measured medium should be short-circuited with the earth through the grounding wire.

Cathodic protection pipeline

The pipe flanges are connected by copper wires, but they must be insulated from the grounding wire.

Magnetic flowmeter is a widely used flow measuring instrument. How should we calibrate it?

Let’s take a look at the calibration method of electromagnetic flowmeter:

  1. Determine the corresponding water pump according to the pipe diameter and flow rate of the verification test;
  2. After the flowmeter is correctly installed and connected, it should be energized and preheated for about 30 minutes in accordance with the requirements of the verification regulations;
  3. If the high-level tank water source is used, check whether the overflow signal of the stabilized water tower appears. Before the formal test, use the verification medium to circulate in the pipeline system for a certain period of time. At the same time, check whether there is any leakage in the sealing parts of the pipeline;
  4. The verification medium should be filled with the electromagnetic flowmeter sensor before the formal verification. Then the downstream valve should be closed to adjust the zero position;
  5. At the beginning of the verification, open the valve at the front of the pipeline and slowly open the valve behind the electromagnetic flowmeter to adjust the flow at the verification point.
  6. During the calibration process, the flow stability of each flow point should be within 1% to 2%-flow method. The total amount law can be within 5%.
    • The temperature change of the verification medium should not exceed 1℃ when the verification process of a flow point is completed. It should not exceed 5℃ when the entire verification process is completed.
    • There must be a sufficiently high pressure downstream of the electromagnetic flowmeter to be checked to ensure that no flashing and cavitation occur in the flow pipeline;
  7. After the test, close the valve at the front end of the test pipeline. Then stop the pump to avoid emptying the voltage stabilization facility. At the same time, the remaining verification medium in the test pipeline must be vented and the control system and the air compressor must be closed.

Extended reading:
What is the K-factor in a flow meter?
Cryogenic Flow Meters|Liquid Nitrogen-Liquid Oxygen-LNG fluids

Choose the Suitable Magmeter

Magnetic flow meter pdf

Frequently
Asked
Questions

A Rotameter flow meter is a variable area flow meter based on float position measurement. It is suitable for liquid and gas volumetric flow measurement and control.

Read more: Rotameter flow meter working principle

All electromagnetic flowmeters need to be calibrated when they leave the factory. Each finished product needs to pass the calibration line inspection before leaving the factory.

It is to install the product on the assembly line. The front end adopts a strictly debugged standard table. A series of coefficients such as the diameter of the flowmeter, the damping coefficient, and the sensor coefficient of the electromagnetic flowmeter are set at the back end. To achieve the same flow rate as the standard meter.

If calibration is done on-site, it may generally be used to calibrate outside the sealed pipeline. Such as portable ultrasonic flowmeter. But the accuracy is generally 0.5. If you just check it, you can use a portable ultrasonic flowmeter.

Read more: Magnetic flow meter calibration

Ultrasonic flow meters and electromagnetic flow meters have different measurement principles.

Electromagnetic flowmeter must measure conductive liquid. The ultrasonic flowmeter can measure pure single-phase liquid. It has nothing to do with the conductivity of the liquid.

The electromagnetic flowmeter must be in contact with the medium to measure. The ultrasonic flowmeter can do contact and non-contact measurement.

The electromagnetic flowmeter is a flow measuring instrument. The measuring principle of the electromagnetic flowmeter is measured according to its principle of conduction. Most of the flow measurement on the market is solved by electromagnetic flowmeters.

The electromagnetic flowmeter is a pure liquid volume measurement instrument.

The mass flow meter is a function of fluid volume and fluid temperature and pressure. Is a dependent variable. The quality of a fluid is a quantity that does not change with time, space temperature, and pressure.

Mass flow meters are compared with electromagnetic flow meters. It can measure non-conductive media. This is one of the biggest differences. In addition, the accuracy of the mass flow meter is higher. The cost is large, and there are fewer applications in the market.

There is a big difference in the performance of general-purpose electromagnetic flowmeters on the market. Some have high precision and many functions. Some have low precision and simple functions.

The basic error of the instrument with high accuracy is (±0.5%~±1%)R.
The instrument with low accuracy is (±1.5%~±2.5%)FS.
The price difference between the two is 1 to 2 times.

Extended reading: Orifice Plate Flow Meter

You may like:

Industrial Oxygen Flow Meters

Oxygen Flow Meters are digital flow meters that can measure industrial oxygen. It is very important to choose a suitable flow meter to measure and…

Industrial CO2 flow meters

CO2 flow meters are instruments that can measure the flow of gaseous or liquid carbon dioxide. CO2 is a common industrial gas, and effective measurement…

Biogas Flow Meters Selection Guide

Biogas Flow Meters are instruments that can measure the flow of biogas. Could be a vortex flow meter, thermal mass flow meter, etc. Commonly used…

LPG flow meters

LPG flow meter is used for flow measurement of liquefied petroleum gas. The flow measurement of LPG is very important in industrial production, transportation and…

Industrial LPG/Propane flow meter

Featured Inline Propane Flow Meter Propane is also generally referred to as liquefied petroleum gas (LPG). So what is the difference and connection between propane…

Clamp on Flow Meters for Liquid Pipes

Clamp on flow meters refers to the non-contact flow meter, or strap-on flow meters, which clamps the ultrasonic sensor outside the pipeline for measurement. Sino-Inst…

Sanitary Flow Meters for Sale

Common sanitary flow meters are sanitary magnetic flow meters and sanitary turbine flow meters. Composed of 304/316 stainless steel. A Sanitary flowmeter with Tri-Clamp fittings…

Liquid Flow Meters Guide

What is a liquid flow meter? A liquid flow meter is a kind of meter that measures the flow of liquid fluid in pipes or…

Cryogenic Flow Meters for Sale

Cryogenic Flow Meters for Highly Accurate and Reliable Cryogenic Fluids Flow Measurement. Sino-Inst offers a variety of  Cryogenic Flow Meters for Cryogenic fluids flow measurement…

Magnetic flow meter manufacturers

Sino-Inst is one of the reliable Magnetic flow meter manufacturers and suppliers in China. Magnetic flow meters apply for wastewater flow rate measurement.

Sino-Inst can offer stainless steel magnetic flow meters, both the Pipeline and plug-in style. Of course, Sino-Inst can offer you with the mass flow meters and other flow meters.

Sino-Inst will offer you Magnetic flow meters with the Best Price. Reference price, $300-400/piece, DN10-DN2000. For special measuring media, we offer special lining materials: F4, F46, Fs, neoprene, urethane rubber, etc.

Sino-Inst offer over 20 Magnetic flow meters, with Best Price. A wide variety of Magmeters options are available to you, such as free samples, paid samples.

About 40% of these are magnetic flow meter, 30% are Insertion Magnetic Flow Meter, 30% are sanitary flow meters. Magmeters products are most popular in North America, Mid East, and Eastern Europe.

The United States, and India, which export 99%, 1%, and 1% of ultrasonic level transmitter respectively.

You can ensure product safety by selecting from a certified supplier, with ISO9001, ISO14001 certification.

Request a Quote

This entry was posted in Flow Measurement Solutions, Blog, Electromagnetic flow meters, Flow Meters, Liquid Flow Meters, Technologies by KimGuo11. Bookmark the permalink.

About KimGuo11

Wu Peng, born in 1980, is a highly respected and accomplished male engineer with extensive experience in the field of automation. With over 20 years of industry experience, Wu has made significant contributions to both academia and engineering projects. Throughout his career, Wu Peng has participated in numerous national and international engineering projects. Some of his most notable projects include the development of an intelligent control system for oil refineries, the design of a cutting-edge distributed control system for petrochemical plants, and the optimization of control algorithms for natural gas pipelines.