The flush flanged diaphragm seal pressure transmitter uses a diaphragm directly welded to the mounting flange, working in conjunction with an inline pressure transmitter to protect against the effects of high and low temperatures, corrosive, clogging, or erosive processes.
Sino-Inst offers a variety of Diaphragm Seal DP/Pressure Transmitters for industrial pressure measurement. If you have any questions, please contact our sales engineers.
The Flush Flanged Diaphragm Seal Pressure Transmitter uses a standard flange as its interface, allowing for on-site flange installation. Because the pressure-bearing diaphragm is exposed and directly senses the pressure, it is easy to clean and meets harsh operating conditions such as moisture resistance, waterproofing, and explosion protection.
This series of products is widely used in industrial process control, petroleum, chemical, and metallurgical industries, as well as in applications involving viscous media containing particles.
High/low temperature fluids;
Highly corrosive/high viscosity fluids;
The fluids which may cause clogging of impulse piping in the low temperature;
Toxic fluids;
The fluids containing suspended solids which are deposited in the impulse piping and may cause clogging.
The biggest advantage of the Diaphragm Seal Pressure Transmitter is the availability of various diaphragm materials. Commonly used diaphragm materials include SUS316L stainless steel, tantalum, Hastelloy, Monel alloy, pure titanium, and F4 alloy.
Choosing the right material means considering both its corrosion resistance and cost-effectiveness. For example, tantalum and Hastelloy diaphragms offer excellent corrosion resistance but are expensive, making them suitable only for highly corrosive environments; other inexpensive materials are not suitable.
The table below introduces several commonly used corrosion-resistant materials suitable for corrosive media for your reference.
The diaphragm seal pressure transmitter is a flange-type pressure transmitter. This type of pressure transmitter assembles diaphragm seals to field transmitters for the purpose of measuring pressure, pressure or level.
The remote seal is used to prevent the medium in the pipeline from directly entering the pressure sensor assembly in the pressure transmitter. It is connected to the transmitter by a capillary filled with fluid. As a result, they’re often used in refining, petrochemical, and chemical plants.
A pressure level transmitter is a device that works on the principle that static pressure is proportional to liquid level height. It is essentially a device that combines the functions of a pressure sensor and a level gauge.
The transmitter uses an advanced isolated diffused silicon sensitive element or a ceramic capacitor pressure sensitive sensor. The measured static pressure of the liquid is converted into an electrical signal.
This process is temperature compensated and linearly corrected, and the final output is a standard electrical signal, common forms are 4~20mA or 1~5VDC, etc.
The pressure gauge is an instrument that uses elastic elements as sensitive elements to measure and indicate pressure higher than the ambient pressure. It is used in almost all industrial processes and scientific research fields.
Pressure transmitter is a device that converts pressure into pneumatic or electric signals for control and remote transmission.
The differences between pressure transmitter and pressure gauge are:
The accuracy of the standard instrument required for pressure transmitter calibration is much higher than the accuracy of the standard instrument required for pressure gauge.
The pressure gauge only needs to calibrate a pair of input and output relationships. The pressure transmitter may need to calibrate the relationship between input and communication data.
Pressure gauge calibration must have corresponding metrological qualifications. Pressure transmitters are generally not required except for production and new construction.
The pressure gauge has poor accuracy and no output. It cannot be operated with a hand operator. Generally, 5 points are calibrated. The back and forth difference is different. The intelligent pressure transmitter generally only needs to calibrate the zero point and full scale.
The output of the pressure gauge is a scale indication, and its own display capability. The pressure transmitter is a current output and must be connected to an ammeter display of the corresponding accuracy level.
A diaphragm seal system consists of a pressure instrument, a fill liquid, and a diaphragm seal, either direct-mount or capillary.
Diaphragm seals are used to seal and protect instruments from process media. The flexibility of the seal lies in the fact that the diaphragm securely seals the contents and penetrates the instrument to accurately measure pressure.
Diaphragm seals are often used in conjunction with pressure transmitters. This combination can be used in extremely harsh environmental conditions.
The fact that they can isolate instruments from any kind of toxic and reactive chemicals makes them particularly useful devices.
Diaphragm-sealed pressure transmitters are used when the medium is corrosive or will corrode the internal parts of the transmitter (for example, ammonia will corrode the copper in the transmitter).
Sino-Inst is Flush Flanged Diaphragm Seal Pressure Transmitters manufacturer in China. We offer all types of Pressure Level Transmitters. Like Direct Mounted, flange-mounted, single flange, double flange, Remote Diaphragm Seals, High Static, Digital Remote.
Most of our Diaphragm Seal Pressure Transmitters are used in oil, liquids, DP transmitters, flow measurement, level measurement (like the ultrasonic level measurement), density, and other process variables.
You can ensure product safety by selecting from a certified supplier with ISO9001, ISO14001 certification. We will share more about instrument calibration, like the flow transmitter calibration.
Request a Quote
Please enable JavaScript in your browser to submit the form
Wu Peng, born in 1980, is a highly respected and accomplished male engineer with extensive experience in the field of automation. With over 20 years of industry experience, Wu has made significant contributions to both academia and engineering projects.
Throughout his career, Wu Peng has participated in numerous national and international engineering projects. Some of his most notable projects include the development of an intelligent control system for oil refineries, the design of a cutting-edge distributed control system for petrochemical plants, and the optimization of control algorithms for natural gas pipelines.
Industrial pressure transmitters for the process pressure measure, monitor and control application.
Industrial pressure transmitters are sensors with electrical transmission output for remote indication of pressure. Process transmitters differentiate themselves from pressure sensors through their increased range of functionality.
They feature integrated displays, offer high measuring accuracies and freely scalable measuring ranges. Communication is via digital signals, and waterproof and explosion-proof certifications are available. Through connection to diaphragm seals, they are suitable for the harshest operating conditions. Ideal for OEMs, process applications, water processing, and industrial pressure applications.
Sino-Inst offers a variety of pressure senors for industrial pressure measurement. If you have any questions, please contact our sales engineers.
Diffused silicon Gauge Pressure Transmitter A gauge pressure (GP) transmitter compares a process pressure against local ambient air pressure. Gauge pressure transmitters have ports to sample the ambient air pressure in real-time.
Explosion-proof Pressure Transmitter Explosion-proof Pressure transmitter, or explosion-proof pressure transducer, with the explosion-proof enclosure. For applications in hazardous areas.
Hygienic / Sanitary Pressure Transmitter Also called Hygienic pressure Transmitters, or tri clamp pressure transmitter. Sanitary pressure Transmitters is used to food &beverage or pharmaceutical application.
High-Temperature Pressure Transmitter High-temperature pressure transmitters with a 4-20mA output. which has a temperature capability of over 850 °C and is not pyroelectric.
Absolute Pressure Transmitter Absolute pressure transmitter with 4-20mA output for measuring pressure with absolute type reference. Absolute pressure (AP) transmitter is a measure of the ideal (complete) vacuum pressure.
Hydrostatic pressure transmitter Hydrostatic pressure transmitter is used for fluid hydrostatic pressure measurement. With working static pressure up to 32Mpa, for liquid, gas or steam .
Sino-Inst also provides repair services for Industrial pressure transmitters. Such as WIKA, Rosemount, and other brands of pressure transmitters.
What is a smart pressure transmitter?
Digital smart pressure transmitter is pressure sensor with a 12-bit or higher microprocessor. Smart pressure transmitters are high performance microprocessor-based transmitters with flexibility. Pressure calibration and output, automatic compensation.
Smart pressure transmitter also called intelligent pressure transmitter.
The intelligent Industrial pressure transmitters consist of two parts: a smart sensor and a smart electronic board.
The smart sensor part includes: a capacitive sensor. A measuring diaphragm detection circuit. A temperature sensor, and a temperature compensation circuit.
The smart electronic board includes: a microcomputer controller. And the peripheral circuit, complete the pressure signal to 4 ~ 20mA dc conversion.
Smart Industrial pressure transmitter is used to measure the pressure of liquid, gas or steam. And then convert the pressure signal into 4 ~ 20mA DC signal output. The intelligent pressure transmitter produced by Sino-Inst can communicate with the HART communicator. It is widely used in weakly corrosive liquids in industrial pipelines, Gas and steam measurement and control systems.
Industrial pressure transmitters Working Principle
Principle and Application of Diffusion Silicon Pressure Transmitter
The pressure of the measured medium directly acts on the diaphragm of the sensor (stainless steel or ceramic). Causing the diaphragm to generate a micro-displacement proportional to the pressure of the medium. The resistance value of the sensor changes. The electronic circuit detects this change and converts and outputs a standard measurement signal corresponding to this pressure.
Capacitive pressure transmitter is mainly composed of capacitance sensor and circuit board. The sensor implements pressure-capacitance conversion. The circuit board converts the capacitance to a two-wire 4-20mA.
When the process pressure is applied to the isolation diaphragm from both sides (or one side) of the measuring chamber, it is transferred to the central diaphragm of the chamber through the silicone oil filling liquid. The central diaphragm is a diaphragm with tensioned edges.
Under the action of pressure, a corresponding displacement is generated. This displacement creates a change in differential capacitance!
And through the adjustment, oscillation and amplification of the electronic circuit board! Converted into 4-20mA signal output! The output current is directly proportional to the process pressure!
Pressure transmitter types include gauge pressure, absolute pressure, and differential pressure. Gauge pressure refers to the pressure that is less than or greater than atmospheric pressure based on the atmosphere. Absolute pressure refers to the absolute zero pressure as the reference and is higher than the absolute pressure. Differential pressure refers to the difference between two pressures.
Pressure transmitters are generally available with three types of electrical output. Millivolt, amplified voltage and 4-20mA. Below is a summary of the outputs and when they are best used.
A sensor with a millivolt output is usually the most economical pressure sensor. The output of a millivolt sensor is nominally about 30mV. The actual output is proportional to the input power or excitation of the pressure sensor. If the stimulus fluctuates, the output will change.
Because of this dependence on the level of excitation, a regulated power supply is recommended for millivolt sensors. Because the output signal is so low, the transducer should not be placed in an electrically noisy environment. The distance between the transducer and the reading instrument should also be kept relatively short.
Voltage Output Pressure Transducers
Voltage output transducers include integral signal conditioning, which provides higher output than millivolt transducers. The output is usually 0-5Vdc or 0-10Vdc. Although model-specific, the output of the transducer is usually not a direct function of the stimulus. This means that as long as the regulated power supply falls within the specified power range, it is usually sufficient. Because of their higher output levels, these sensors are not as susceptible to electrical noise as millivolt sensors and can therefore be used in more industrial environments.
4-20 mA Output Pressure Transducers
These types of sensors are also called pressure transmitters. Because 4-20mA signals are least affected by electrical noise and resistance in the signal line, these sensors are best used when signals must be transmitted over long distances. These sensors are typically used in applications where the lead must be 1000 feet or more.
Petroleum, petrochemical, chemical. Matching with throttling devices to provide accurate flow measurement and control. Measures pressure and level in pipes and tanks.
Electricity, city gas. And other companies and businesses require high stability and high precision measurement and other places.
Pulp and papermaking are used in places that require chemical-resistant liquids and corrosion-resistant liquids.
Steel, non-ferrous metals, and ceramics are used in furnace pressure measurement and other places that require high stability and high precision measurement. They are also used in places that require stable measurement under strict control (temperature, humidity, etc.).
Machinery and shipbuilding, used to strictly control the place where high precision is required for stable measurement.
Pressure Transmitters VS Pressure Sensors VS Pressure Transducers
A pressure sensor is a device or device that can sense a pressure signal and convert the pressure signal into a usable output electrical signal according to a certain rule.
A pressure sensor usually consists of a pressure-sensitive element and a signal processing unit. According to different test pressure types, pressure sensors can be divided into gauge pressure sensors, differential pressure sensors and absolute pressure sensors. A pressure sensor is the core part of pressure transmitter.
In a pressure transducer, a thin-film or piezo-resistive pressure sensor is mounted on a process connection. The transducer converts pressure into an analog electronic output signal, typically as a millivolt per volt output. These signals are not linearized or temperature compensated.
A pressure transmitter has additional circuitry that linearizes, compensates, and amplifies the signal from a transducer. The different signal types are typically voltage signals (eg, 0 to 5 or 0 to 10 volts), milliamp (eg, 4 to 20 milliamp), or digital. The instrument then can transmit the signal to a remote receiver.
If you still don’t know how to choose the right pressure transmitter. Please feel free to contact our sales engineers. We will provide you with the best pressure measurement and control solution.
Guidelines for Troubleshooting Pressure Transmitters
When this happens, you should consider: Is the pressure source itself stable? The degree of anti-interference ability of the instrument or pressure sensor. Is the sensor wiring normal? The sensor itself is vibrating and the cause of the failure. Is the polarity of the power supply reversed?
Check the degree of pressure variable; make 4-20mA output adjustment.
Check the transmitter’s power supply voltage, calibration equipment and set values (4mA and 20mA points). Check whether the pressure interface is leaking or blocked. Check the wiring mode and power supply. If normal, check if the sensor has zero output. Or Perform a simple pressurization to see if the output changes. If there is a change, the sensor is not damaged.
Check if pressure transmission is blocked; check calibration equipment and adjust sensors; check vehicle damping and electromotive force interference.
1. Do a 4-20mA trimming first to calibrate the D / A converter inside the transmitter. Since it does not involve sensing components, no external pressure signal source is required.
2. Do a full fine-tuning again to make the 4-20mA, digital reading coincide with the pressure signal actually applied. So a pressure signal source is needed.
3. Finally, do the re-ranging, and adjust the analog output 4-20mA to match the external pressure signal source. Its role is exactly the same as that of the zero (Z) and range (R) switches on the transmitter housing. The communicator can change the range of the intelligent pressure transmitter. And can adjust the zero point and the range without inputting a pressure source. However, this method cannot be called calibration and can only be called “setting the range”. True calibration requires a standard pressure source input to the transmitter.
Adjusting the range (LRV, URV) without using a standard is not calibration. And ignoring the input part (input transmitter pressure) for output adjustment (transmitter conversion circuit) is not a correct calibration. Furthermore, the relationship between the pressure and differential pressure detection components, the A / D conversion circuit, and the current output is not equal. The purpose of calibration is to find the changing relationship between the three. Emphasize one point: Only when the input and output (input transmitter pressure, A / D conversion circuit, loop current output circuit) are debugged together, can it be called a true calibration.
First of all, the parameters that must be seen when purchasing a pressure transmitter are: Pressure range. Range. Measurement medium. Installation method-threaded flange clamps, etc. Installation dimensions. Temperature. Whether with display. Whether with HART protocol. Output type. Current output or voltage output. Explosion-proof level, protection level. Accessories. Mounting bracket. The above parameters will affect the price of the pressure transmitter. Sino-Inst, as the manufacturer of pressure transmitter, offer you with the best price.
The input of the pressure transmitter is a pressure signal. The function of the pressure transmitter is to convert the pressure signal input from the outside into a current or voltage signal.
A pressure transmitter is a device that converts pressure into pneumatic or electric signals for control and remote transmission.
It can convert physical pressure parameters such as gas and liquid sensed by the load cell sensor into standard electrical signals (such as 4~20mADC, etc.). Measurement, indication and process adjustment are carried out by supplying secondary instruments such as indicating alarms, recorders and regulators.
High Temperature Pressure Transducer is also called High Temperature Pressure Sensor, or High Temperature Pressure Transmitter. The High Temperature Pressure Transducer is used for applications where the medium temperature exceeds…
What Is Static Water Pressure? Definition of Static Water Pressure: Static Water Pressure refers to the pressure on water when it is stationary or moving in a straight line at…
What is a ceramic pressure sensor? Ceramic pressure sensors are sensor diaphragms made of ceramic alumina (Al2O3). Ceramic is a material with high elasticity, corrosion resistance, wear resistance, impact, and…
The Hydrostatic Pressure Transmitter measures the hydrostatic pressure exerted by a hydrostatic head. Use these hydrostatic pressure transmitters to measure the liquid level in storage tanks, processing vessels, collection tanks,…
Intrinsically safe type is an explosion-proof type of electrical equipment. When purchasing electrical equipment, do you often hear about intrinsic safety? For example, when ordering pressure transmitters or flow meters…
4-20mA to 0-10v voltage, this is I/V conversion. That is current-voltage conversion, usually used for long-distance signal transmission in the industry. How to convert a 4-20mA to 0-10V /1-5V signal?…
What does SCADA stand for? SCADA is the abbreviation of Supervisory Control And Data Acquisition. Namely data acquisition and monitoring control system. SCADA system is also called monitoring configuration software,…
What is a pressure sensor? A pressure sensor is a device that senses a pressure signal and converts the pressure signal into a usable output electrical signal according to certain…
You may have heard of Static Pressure, Dynamic Pressure and Total Pressure. Especially in some industrial process pipe parameters. So what are Static Pressure, Dynamic Pressure and Total Pressure? What…
What is a piezoelectric pressure sensor? The piezoelectric pressure sensor is a sensor that uses the piezoelectric effect of piezoelectric materials to convert the measured pressure into an electrical signal…
An Air pressure transducer is a sensor that converts the mechanical signal of air pressure into a current signal. Pressure has a linear relationship with voltage or current, and it…
Steam pressure transmitters are widely used in the measurement and control of various high-temperature steam piping systems. The monitoring of steam pipes is very important. To measure the pressure of…
Cryogenic pressure transducer for low temperature pressure measurement. -196℃~+125℃、-260℃/-350c(especial). Sino-Inst offers a variety of Pressure Sensors for pressure measure and control. If you have any questions, please contact our sales…
Dynamic pressure sensor, the transmitter is a high frequency sensor. Sino-Inst offers a variety of Dynamic Pressure Sensors for pressure measurement. If you have any questions, please contact our sales…
Intrinsically safe vs explosion proof is a common function of pressure transmitters. When pressure transmitters need to be used in high-risk and explosive places, you must know it! Sino-Inst offers…
Sino-Inst offers over 20 industrial pressure transmitters. A wide variety of industrial pressure transmitters options are available to you. Such as free samples, paid samples. Sino-Inst is a globally recognized manufacturer of industrial pressure transmitters, located in China. Sino-Inst sells through a mature distribution network that reaches all 30 countries worldwide. Industrial pressure transmitters products are most popular in Europe, Southeast Asia, and Mid East. You can ensure product safety by selecting from certified suppliers. With ISO9001, ISO14001 certification.
Request a Quote
Please enable JavaScript in your browser to submit the form
Wu Peng, born in 1980, is a highly respected and accomplished male engineer with extensive experience in the field of automation. With over 20 years of industry experience, Wu has made significant contributions to both academia and engineering projects.
Throughout his career, Wu Peng has participated in numerous national and international engineering projects. Some of his most notable projects include the development of an intelligent control system for oil refineries, the design of a cutting-edge distributed control system for petrochemical plants, and the optimization of control algorithms for natural gas pipelines.
Gauge Pressure Sensor (GP) is a pressure transmitter for Gauge pressure measurement. SI-3151GP Capacitive Gauge Pressure Transducers use capacitive sensing elements to measure gauge pressure.
Gauge pressure (GP) transmitters compare process pressure with local ambient air pressure. Gauge pressure transmitters have ports for a real-time sampling of ambient air pressure. There are different types of pressure measurement. Such as gauge pressure, absolute and differential pressure measurement. Among them, the gauge pressure measurement is performed using a gauge pressure transmitter. These devices are designed to measure pressure relative to ambient atmospheric pressure. The output of the gauge pressure sensor will vary depending on the atmosphere or different altitudes. Measurements above ambient pressure are expressed as positive numbers. And negative numbers indicate measurements below ambient pressure. At Sino-Inst, we offer gauge pressure transmitters for a variety of industrial applications.
Sino-Inst offers a variety of Gauge Pressure Transmitter for industrial pressure measurement. If you have any questions, please contact our sales engineers.
TIIS flameproof (Exd IICT4) KOSHA flameproof FM explosion proof, intrinsic safe and Nonincendive ATEX/NEPSI/IECEx flameproof, intrinsic safe and Type n INMETRO flameproof
4 to 20 mA DC (SFN communication) 4 to 20 mA DC (HART® communication) MODBUS-485 signal
Process connections
Rc 1/2 or 1/2 NPT internal thread
Safety certification
Safety Integrity Level (SIL) 2 certification
By selecting from a large range of materials, we are able to customize the transmitter and supplyremote seals.
We temperature compensate for the whole assembly to maintain the highest level of performance.
Selecting from 316SS, Hastelloy, Monel, Tantalum, Gold, and Ceramic.
We can custom build a transmitter to our own high standards, or to your individual specifications.
To provide high flexibility, remote seals can be fitted to any of the SI series of transmitters.
For further information, please Contact us.
Gauge Pressure Sensor Applications
Pressure transmittersare used to measure level, density, and pressure of liquids, gases or vapors. And then converted to a 4-20 mA DC signal output. The SI-3151 GP intelligent pressure transmitter can communicate with the HART Communicator.
There are many types of pressure sensors, which are widely used in:
Water plants. Oil refineries. Sewage treatment plants. Building materials. Light industry. Machinery and other industrial fields.
To achieve the measurement of liquid, gas, steam pressure.
However, different pressure sensors are required for different applications.
The pressure sensor can be used to measure some mechanical physical quantities such as: Displacement. Vibration. Angular velocity and acceleration.
It is also widely used in the measurement of thermal engineering parameters such as: Pressure. Differential pressure. Liquid pressure. And content of ingredients.
Gauge Pressure Sensor working principle
What is gauge pressure?
Gauge pressure, also known as ‘relative pressure’ or ‘vented gauge pressure’. Gauge pressure is the measurement of pressure relative to atmospheric or barometric pressure.Gauge pressure sensor has the back of the sensing element open (or ‘vented’), to provide a reference to atmospheric. More about the Difference between absolute, gage and differential pressure.
How does a gauge pressure sensor work?
Gauge Pressure Transmitter / transducer (GP) is a pressure transmitter for Gauge pressure measurement. According to the measurement principle, it can be divided into: capacitive and diffused silicon.
Capacitive pressure sensor (capacitive type pressure transducer) is a pressure sensor that uses a capacitive sensing element to convert the measured pressure into an electrical output with a certain relationship. It is characterized by low input energy, high dynamic response, small natural effects, and good environmental adaptability. It generally uses a round metal film or metal-plated film as an electrode of the capacitor. When the membrane is deformed by pressure, the capacitance formed between the membrane and the fixed electrode changes. Through the measuring circuit, the electrical signal with a certain relationship with the voltage can be output. Capacitive pressure sensor is a capacitive sensor with variable pole distance. It can be divided into single capacitive pressure sensor and differential capacitive pressure sensor.
SMT3151 TGP-Gauge Pressure Transmitter / Transducer is a diffusion silicon pressure transmitter. The working principle of the diffused silicon pressure sensor is based on the piezoresistive effect. Using the principle of piezoresistive effect, the pressure of the measured medium directly acts on the diaphragm of the sensor (stainless steel or ceramic). Make the diaphragm produce a slight displacement proportional to the pressure of the medium. To change the resistance value of the sensor. Use electronic circuits to detect this change. And convert and output a standard measurement signal corresponding to this pressure.
3151 gage pressure transmitter
Gauge vs Absolute Pressure Sensor
In terms of pressure type, pressure sensors can be divided into gauge pressure, absolute pressure, and negative pressure.
Absolute pressure: Absolute pressure for short, is the pressure calculated from the absolute zero pressure or the vacuum starting point.
Gage pressure: refers to the pressure calculated from the atmospheric pressure of a specific place at a specific time as a starting point. Atmospheric pressure at the same location will change slightly.
Vacuum: When the measured absolute pressure is less than atmospheric pressure, the difference between the measured absolute pressure and absolute vacuum.
Negative pressure: when the measured absolute pressure is less than atmospheric pressure, the difference between the current atmospheric pressure and the measured absolute pressure, referred to as negative pressure.
The formula for the relationship between absolute pressure, gauge pressure, and atmospheric pressure: absolute pressure = gauge pressure + atmospheric pressure.
Therefore, when selecting a pressure sensor, it is generally necessary to clearly indicate the pressure type of the pressure sensor,
Gauge vs Absolute Pressure Sensor
Gauge pressure and absolute pressure are based on different measurement reference points. The reference point for gauge pressure measurement is the local atmospheric pressure. Absolute pressure is the absolute vacuum zero. Absolute pressure sensors cannot replace gauge pressure sensors.
In layman’s terms. When your measured object uses atmospheric pressure as the reference point, and only has the inflation action, select the gauge pressure type. When your measured object takes absolute vacuum zero as the reference point, and there are inflation and inhalation actions, it is often the absolute pressure type.
The two principles of gauge pressure and absolute pressure sensor are different! Cannot be used instead!
Cryogenic pressure transducer for low temperature pressure measurement. -196℃~+125℃、-260℃/-350c(especial). Sino-Inst offers a variety of Pressure Sensors for…
A pressure transmitter also often called a pressure transducer. A pressure transmitter is a device used to…
Sino-Instrument Gauge Pressure Transmitters, made in China, are high-performance cost-effective devices, used where long term accuracy and reliability is a priority.
SI-3151GP Advanced Transmitter Gauge Pressure Transmitters, are used to measure the pressure of gases, liquids, and steam, as well as to measure tank pressure and fluid levels. Sino-Instrument 1151 Gauge Pressure Transmitters are high-performance cost effective devices used, where long term accuracy and reliability is a priority. We also offer Gauge Pressure Transmitter SMT3151 TGP, forthe process, oil and gas industry.
Wu Peng, born in 1980, is a highly respected and accomplished male engineer with extensive experience in the field of automation. With over 20 years of industry experience, Wu has made significant contributions to both academia and engineering projects.
Throughout his career, Wu Peng has participated in numerous national and international engineering projects. Some of his most notable projects include the development of an intelligent control system for oil refineries, the design of a cutting-edge distributed control system for petrochemical plants, and the optimization of control algorithms for natural gas pipelines.
Explosion Proof Pressure transmitter refers to a pressure sensor with explosion-proof or intrinsically safe housing. Suitable for hazardous and explosive areas.
Explosion Proof Pressure transmitter, or explosion-proof pressure transducer, with the explosion-proof enclosure. For applications in hazardous areas. Class I, Division 1. Flameproof ExdIIBT5Gb; Intrinsically safe ExiaIICT4/T5/T6Ga. SIEP489 has flexible pressure calibration, push-button configuration, and programmable using HART® Communication. All our electronic pressure transducers can be offered with Explosion-proof. Select explosion-proof pressure transmitters with Ex d certification and 4-20mA output signals for installation.
Sino-Inst offers a variety of Explosion-proof pressure sensors for industrial pressure measurement. If you have any questions, please contact our sales engineers.
We can provide maintenance, calibration and other services of the same type of products. Such as WIKA, Rosemount pressure transmitter.
Contact us now to see how we can help you with a pressure gauge solution that fits your exact needs.
Know More About Explosion proof pressure transmitter
Explosion-proof pressure transmitters are available in a wide range of specifications, easy to install and use, safe and explosion-proof. They can be widely used in petrochemical, electric power, metallurgy, pharmaceutical, food processing, and other industries.
Products comply with the “IEC” standard, and explosion-proof pressure transmitters are internationally renowned.
The company’s high-precision, high-stability pressure sensor components, through high-reliability amplifier circuit and precise temperature compensation, convert the absolute or gauge pressure of the measured medium into 4~20mA, 0~5VDC, 0~10VDC, and 1~5VDC. Such as standard electrical signals.
High-quality sensors hermetically sealed soldering technology and a complete assembly process ensures excellent quality and performance. The product is available in a variety of interface styles. And a variety of lead styles to best meet customer needs. And is suitable for use with a variety of measurement and control equipment.
Explosion proof pressure transmitter working principle
The explosion-proof pressure transmitter consists of an integrated intelligent sensor and peripheral circuits.
The sensor part is composed of a pressure sensor, a signal modulation circuit, a dedicated digital processing chip, a temperature sensor, and data memory, and the peripheral electronic circuit part is composed of an LCD display, function keys, and an EMC circuit.
The pressure signal is converted into an electrical signal by the pressure sensor. And the electrical signal is modulated. And sent to a dedicated digital processing chip for data processing. And then converted into a 4~20 mA output signal corresponding to the pressure signal. And the HART digital signal is superimposed on the current signal for communication.
Such as flammable gas, dust environment, oil refinery, petrochemical plant, gas station, gas station, etc., explosive gas environment.
Under atmospheric conditions, a mixture of combustible substances in the form of gas, steam or mist, and air. After being ignited in the mixture, the combustion will spread throughout the environment of the unburned mixture.
Such as CH4, C2H2, C2H4, NH3, CO, C2H5OH, and other explosion-proof electrical equipment.
The explosion-proof of the current pressure transmitter: mainly two forms of isolation explosion-proof and intrinsically safe explosion-proof.
Intrinsically safe explosion-proof:
“i” (Intrinsically safe electrical equipment and related equipment) Intrinsically safe circuits, circuits that cannot ignite the specified explosive gas or steam under the specified test conditions, under the specified test conditions, the electric sparks and thermal effects generated under the specified fault state . Intrinsically safe electrical equipment: All circuits are intrinsically safe electrical equipment.
Example: Intrinsic Safety: Ex ia II BT4
Flameproof:
It refers to the electrical equipment that encloses the components that can ignite the explosive mixture in a shell, and the shell can withstand the explosive pressure of the internal explosive mixture and prevent the explosion of the surrounding explosive mixture.
For example: Flameproof: Ex d II CT6
Ex(ia)ⅡC T6:
Sign
Symbol
Meaning
Explosion-proof declaration
Ex
Meet certain explosion-proof standards, such as my country’s national standards
Explosion-proof method
ia
Adopt ia-level intrinsically safe explosion-proof method, can be installed in О area
Gas category
Il c
It is allowed to involve IIC explosive gas
Temperature group
T6
The surface temperature of the instrument does not exceed 85℃
Ex(ia)ⅡC:
Sign
Symbol
Meaning
Explosion-proof declaration
Ex
Compliance with European explosion-proof standards
Explosion-proof method
ia
Adopt ia-level intrinsically safe explosion-proof method, can be installed in О area
Explosion-proof differential pressure transmitter is used to measure the liquid level, flow rate and pressure of liquid, gas or steam under high working pressure environment. Then converted into 4 ~ 20mA DC signal output. Intelligent type can communicate with HART Communicator.
High Temperature Pressure Transducer/Transmitter for measuring pressure in hot environments. Liquids or gases up to 850 ° C. Such as steam, food processing & engine monitoring.
Application of high temperature pressure transmitter in steam pipeline.
Liquid level sensors also called a water pressure sensor, or water pressure transducer. SI-10 liquid pressure sensor uses waterproof device to achieve IP68 waterproof rating. Like: water pipe pressure, oil pressure for pipe or tank.SI-10 liquid pressure sensor is a piezoresistive silicon pressure sensor.
Gas pressure sensor for industrial gas pressure monitoring. Pagoda gas nozzle Φ8. Such SI-503K Pagoda Joint Gas Pressure sensor uses stainless steel as a whole. High-precision strain gage and advanced technology. It has high sensitivity, stable performance and good impact resistance.
Sino-Inst offers over 20 Explosion Proof Pressure Transmitters. A wide variety of Pressure sensors options are available to you. Such as free samples, paid samples.
Sino-Instrument is a globally recognized manufacturer of Pressure sensors, located in China. Sino-Instrument sells through a mature distribution network that reaches all 30 countries worldwide.
Pressure sensors products are most popular in Europe, Southeast Asia, and Mid East. You can ensure product safety by selecting from certified suppliers. With ISO9001, ISO14001 certification.
Request a Quote
Please enable JavaScript in your browser to submit the form
Wu Peng, born in 1980, is a highly respected and accomplished male engineer with extensive experience in the field of automation. With over 20 years of industry experience, Wu has made significant contributions to both academia and engineering projects.
Throughout his career, Wu Peng has participated in numerous national and international engineering projects. Some of his most notable projects include the development of an intelligent control system for oil refineries, the design of a cutting-edge distributed control system for petrochemical plants, and the optimization of control algorithms for natural gas pipelines.
Remote seal pressure transmitter, with capillary and diaphragm seal, remote mount. Diaphragm seal systems protect pressure transmitters from hot, viscous, contaminated or corrosive media.
Remote Diaphragm seal pressure transmitter with capillary is used as a level transmitter. Diaphragm Seals also called chemical seals, are used in applications where pressure sensor requires isolation from the process media. These applications are corrosive, high temperature, clogged. Or must sanitary fluids to remain in the pipeline or container. The pressure of the liquid in the process does not affect the pressure sensor. Instead, it is applied to the remote seal. And through the capillary, hydraulic pressure is transmitted to the pressure sensor. Installing and filling the diaphragm seal, the impact on instrument performance will be minimized.
Sino-Inst also offers repair, refurbishment or replacement of used transmitters with remote seals.
Features of Remote Diaphragm Seal Pressure Transmitter
Protect pressure sensor
The remote transmission diaphragm can protect the transmitter diaphragm from corrosive, aggressive or extreme temperature.
Various sealing diaphragms are available
Sino-Inst can provide a suitable sealing diaphragm according to your measurement requirements. For example, remote threaded seal, flush flanged type seals, remote flange seal-RTJ gasket surface, extended flanged seal, etc.
Suitable for special environments.
Such as: High / low temperature fluids; Highly corrosive / high viscosity fluids; Toxic fluids; The fluids containing suspended solids which are deposited in the impulse piping and may cause clogging.
Specifications of Remote Diaphragm Seal Pressure Transmitter
two-wire system, 4-20mADC + HART output, digital communication; output signal limit: Imin = 3.9mA, Imax = 20.5mA
Alarm current:
①Low report mode (minimum): 3.7mA ②High report mode (maximum): 21mA ③No report mode (hold): keep the effective current value before the fault ④Alarm current standard setting: high report mode
Response time:
the damping constant of the amplifier part is 0.1s; the time constant of the sensor and the remote flange is 0.2-6s, which depends on the range of the sensor, the range ratio, the length of the capillary, and the viscosity of the filling fluid The additional adjustable time constant is: 0.1-60s.
Ambient temperature:
minimum: depends on the filling liquid; maximum: 85 ℃; with liquid crystal display, fluorine rubber sealing ring is -20 ~ +65 ℃
ANSI standard: 150psi-600psi; DIN standard: PN1.6MPa-PN10MPa
Warm-up time:
<15s
Explosion-proof performance:
NEPSI explosion-proof license: ExdⅡCT6; NEPSI intrinsically safe license: ExiaⅡCT4; allowable temperature is -40 ~ + 65 ℃
Power and load conditions:
① The power supply voltage is DC24V, R≤ (Us-12) / Imax kΩ, where Imax = 23mA ②Max power supply voltage: 42VDC ③Minimum power supply voltage: 12VDC, 15VDC (backlit LCD display) ④Digital communication load range: 250-600Ω
Electrical connection:
M20 × 1.5 cable sealing buckle, the terminal is suitable for 0.5-2.5mm2 wire
Process connection:
The remote flange meets ANSI standard or DIN standard. Can be installed directly, please refer to the dimension drawing for flange size
Types of SMT3151 Remote Diaphragm Seal System Pressure Transmitters
3151T flange type remote pressure transmitter
The selection is as follows: 3151TGP4SF00S1M4B4 0~40kPa 1199FFW A50AADL03H00
On behalf of the 3151TGP base table plus an American standard 2”150LB flange type remote transmission device, the capillary length is 3 meters.
3151T flat remote pressure transmitter
The selection is as follows: 3151TGP4SF00S1M4B4 0~40kPa 1199PFWA50AADL03H00
On behalf of the 3151TGP base table plus an American standard 2”150LB flat remote transmission device, the capillary length is 3 meters.
3151T type insert barrel remote pressure transmitter
The selection is as follows: 3151TGP4SF00S1M4B4 0~40kPa 1199EFWA50AABDL03H00
On behalf of the 3151TGP base table plus an American standard 2”150LB plug-in remote transmission device, the capillary length is 3 meters, the insertion barrel length is 100mm.
3151T threaded remote pressure transmitter
The selection is as follows: 3151TGP7SF00S1M4B4 0~1000kPa 1199RTWA1AADL03H00
On behalf of the 3151TGP base table plus a threaded connection remote transmission device, capillary length of 3 meters, user connection thread specifications 1/2NPT-14.
3151T type three clamp type remote pressure transmitter
The selection is as follows: 3151TGP5SF00S1M4B4 0~100kPa 1199SCWA1A0DL03H00
On behalf of the 3151TGP base table plus a three-clamp type remote transmission device, the capillary length is 3 meters, the user connection clamp specification is 1 1/2 inch.
3151GP/DP flange type remote pressure transmitter
The selection is as follows: 3151GP4SF22S1M4B3 0~40kPa 1199FFW A50AADL03H00
On behalf of the 3151GP base table plus an American standard 2”150LB flange type remote transmission device, the capillary length is 3 meters.
3151GP/DP flat remote pressure transmitter
The selection is as follows: 3151GP4SF22S1M4B3 0~40kPa 1199PFWA50AADL03H00
On behalf of the 3151GP base table plus an American standard 2”150LB flat remote transmission device, the capillary length is 3 meters.
3151GP/DP type insert barrel remote pressure transmitter
The selection is as follows: 3151GP4SF22S1M4B3 0~40kPabr> 1199EFWA50AABDL03H00
On behalf of the 3151GP base table plus an American standard 2”150LB plug-in remote transmission device, the capillary length is 3 meters, the insertion barrel length is 100mm.
3151GP/DP type threaded remote pressure transmitter
The selection is as follows: 3151GP7SF22S1M4B3 0~1000kPa 1199RTWA1AADL03H00
On behalf of the 3151GP base table plus a threaded connection remote transmission device, capillary length of 3 meters, user connection thread specifications 1/2NPT-14 specific size,
3151GP/DP type three clamp type remote pressure transmitter
The selection is as follows: 3151TGP5SF22S1M4B3 0~100kPa 1199SCWA1A0DL03H00
On behalf of the 3151GP base table plus a three-clamp type remote transmission device, the capillary length is 3 meters, the user connection clamp specification is 1 1/2 inch.
Diaphragm Seal System
Remote Diaphragm seal pressure transmitter, is the capillary type pressure transmitter. This type pressure transmitter, assembling diaphragm seals to field transmitters for the purpose of measuring pressure, differential pressure, level, and flow.
Basically, diaphragm seals are used in all pressure measurement processes to avoid direct contact between the measuring instrument and the medium during this process. In addition, if the measuring point cannot be installed or read because the measuring point is located in a hard-to-reach location, a diaphragm seal can also be used. In both cases, the applied pressure is transferred to the measuring instrument through the system fill fluid in the diaphragm seal housing. The diaphragm of the seal can be made of different materials, such as stainless steel, Hastelloy, Monel or tantalum. In addition, coatings with ECTFE, PFA or gold can also be used.
We can provide the best diaphragm seal design, materials, system fill fluid and accessories for each application. The combined configuration of the pressure measuring instrument and the diaphragm seal is mainly determined by the special application conditions of the diaphragm sealing system.
How does a diaphragm pressure sensor work?
When the diaphragm seal pressure transmitter is working, the high and low pressure side isolation diaphragms and the filling liquid transfer the process pressure to the center filling liquid. The filling fluid in the center transmits the pressure to the sensing diaphragm in the center of the δ-chamber sensor. The sensing diaphragm is a tensioned elastic element, and its displacement changes with the differential pressure. For GP gauge pressure transmitters, the atmospheric pressure is applied to the low-pressure side of the sensing diaphragm. AP absolute pressure transmitter, the low pressure side always maintains a reference pressure. The maximum displacement of the sensing diaphragm is 0.004 inches (0.10 mm). The displacement is proportional to the pressure. The two capacitance fixed plates of the measuring diaphragm are linearly converted into a 2-wire current, voltage or digital HART output signal of 4-20mADC by the amplifying circuit.
What is a diaphragm seal?
Diaphragm seals, also known as chemical seals or remote seals, are used for pressure measurements when the process medium should not come into contact with the pressurised parts of the measuring instrument.
A diaphragm seal has two primary tasks:
Separation of the measuring instrument from the process medium
Transfer of the pressure to the measuring instrument
The remote seal is used to prevent the medium in the pipeline from directly entering the pressure sensor assembly in the pressure transmitter. It is connected to the transmitter by a capillary filled with fluid. As a result, they’re often used in refining, petrochemical, and chemical plants.
Applicaitons of diaphragm seal
Typical applications where a diaphragm seal provides a cost-effective solution, to protecting the pressure instrument are:
In applications where the process fluid is corrosive;
In applications where the process fluid has a high viscosity, is comprised of slurries, sludge or other material that can actually coat, or damage a traditional pressure measuring device;
In applications where the process fluid can freeze or polymerize, thus causing a condition that might lead to the instrument becoming immobilized, or incapable of transmitting an accurate pressure measurement or signal.
The process side of the seal is isolated by a flexible diaphragm. The internal space between this diaphragm and pressure measuring sensor is filled with a system fill fluid. The pressure is transmitted from the measured medium, by the elastic diaphragm into the fluid. And from there to the measuring element, i.e. to the pressure measuring instrumentor the transmitter.
Often, between the diaphragm seal and pressure measuring instrument, a capillary is connected. Capillary can eliminate or to minimize temperature effects from the hot fluid to the measuring instrument.
A Remote seal is mounted to the process by threaded, flanged, in-line, sanitary, or other connections. Usually, the fittings consist of T-pieces which are integrated into a pipeline, or of welding sockets which are welded to a pipeline, the process reactor or a tank.
This diaphragm seal type offers the advantage, that the “contact surface” between pressure medium and the diaphragm is relatively large. Thus ensuring accurate pressure measurement, especially for very low pressures (< 600 mbar).
Although standard remote seal bodies and diaphragms, are made of stainless steel, a variety of materials, from carbon steel to Hastelloy® C-276, are available to meet the demand of most applications.
A remote seal from Sino-Instrument can operate in pressure applications from 10″ Hg to 20,000 psi, and media temperatures between -130°F and 752°F. We can try to Learn more about the functionality, areas of application and advantages of a diaphragm seal in the following WIKA video.
The electronic watch case can rotate 360 degrees at the maximum. The positioning screw can fix it at any position.
Single-crystal silicon remote flange is connected with the matching flange conforming to ANSI / DIN standard. The matching flange should be equipped with soft gasket and fixed bolts and nuts. The user can choose to install bolts and nuts.
For the remote transmission pressure transmitter with capillary, if the remote transmission sealing device is lower than the transmitter body, the maximum height drop between the remote transmission sealing device and the transmitter body should be less than 5m. When the working pressure is lower than 100kPa absolute pressure, the transmitter body must be lower than the remote transmission sealing device.
The minimum bending radius of the capillary is 75mm, winding is strictly prohibited
Q&A
Parameters that determine the design of a remote seal transmitter
Location of the transmitter (indoor versus outdoor). Temperatures (process and ambient). Exposure to vacuum. Pressure (operating and maximum). Length of capillary. Type of seal desired. Process connection, material of construction and similar considerations. Installation requirements. Measurement span.
When are threaded connections used with diaphragm seals?
The combinations of diaphragm seals with threaded connection can be used for processes with extreme temperatures and with aggressive, adhesive, corrosive, environmentally hazardous or toxic media.
Why are there different system fill fluids with diaphragm seals?
In selecting the system fill fluid for diaphragm seals, factors such as compatibility (physiologically harmless) and also temperature and pressure conditions at the measurement location are of crucial importance. Depending on the system fill fluid, the appropriate minimum and maximum operating temperature range must be observed.
How are the diaphragm seals connected?
The diaphragm seals are available with female or male thread in their basic design. Due to the wide variety of available process connections they can be mounted to many different connections without any problems. Generally these connections are T-pieces which are integrated into a pipeline or welded to a pipeline by means of a welding socket.
Wu Peng, born in 1980, is a highly respected and accomplished male engineer with extensive experience in the field of automation. With over 20 years of industry experience, Wu has made significant contributions to both academia and engineering projects.
Throughout his career, Wu Peng has participated in numerous national and international engineering projects. Some of his most notable projects include the development of an intelligent control system for oil refineries, the design of a cutting-edge distributed control system for petrochemical plants, and the optimization of control algorithms for natural gas pipelines.
Hydrostatic Pressure Transmitters is an instrument that measures the hydrostatic pressure or differential pressure exerted by a hydrostatic head.
Feel the measured pressure through the remote transmission device installed on the pipeline or container. The pressure is transmitted to the main body of the transmitter through the filling silicone oil (or other liquid) in the capillary tube. Then there is the delta chamber and the amplifier circuit board in the main body of the transmitter. Convert into 4-20mA DC signal output. HP Smart can communicate with a HART handheld communicator. Use it to set, monitor, or form an on-site monitoring system with the host computer.
The Hydrostatic pressure transmitter is used to measure the liquid level, flow, and pressure of the liquid, gas or steam under high working pressure, and then convert to 4~20mA DC signal output.
The high hydrostatic pressure transmitter can measure differential pressure below 32MPa hydrostatic pressure.
With 32MPa working pressure and overload protection.
Ensuring reliable application of the transmitter in Hydrostatic pressure systems.
Precipitating medium with solid particles or suspended matter
Strong corrosive or highly toxic medium
It can eliminate the phenomenon that the pressure guiding tube leaks and pollutes the surrounding environment. It can avoid the instability of the measurement signal when the isolation fluid is used. The tedious work of frequently supplementing the isolation fluid is required.
Continuous and accurate measurement of interface and density
The remote transmission device can avoid the mixing of different instantaneous media. So that the measurement result truly reflects the actual situation of the process change.
Occasions requiring high hygiene and cleanliness
For example, in the production of food, beverage and pharmaceutical industries, it is not only required that the parts of the transmitter contacting the medium meet the hygienic standards. It should also be easy to wash. To prevent cross-contamination of different batches of media.
Hydrostatic pressure is the pressure generated by the weight of the liquid above the measurement point when the liquid is stationary. The height of the liquid column with uniform density is proportional to the hydrostatic pressure. As the weight of the fluid exerting downward force from above increases, the hydrostatic pressure increases in proportion to the depth measured from the surface.
If the fluid is inside the container, the depth of the object placed in the fluid can be measured. The hydrostatic characteristics of a liquid are not constant, and the main factors affecting it are the density and local gravity of the liquid. In order to determine the hydrostatic pressure of a particular liquid, both quantities need to be known.
The deeper an object is placed in a fluid, the greater the pressure it bears. This is because the weight of the fluid is higher than its weight. Due to the weight of the fluid, the denser the fluid above it, the greater the pressure on the submerged object.
Measuring principle
The pressure in the liquid increases as the filling height increases. The hydrostatic pressure is transmitted to the measuring unit through the stainless steel diaphragm. Bubbling, accumulation of liquids, fluctuating electrical characteristics, and container design will not affect the measured value.
The formula for calculating the hydrostatic pressure of a column of liquid is:
Phyd = h.ρ.g
Prel = h.ρ.g
Pabs = h.ρ.g + Patm
Phyd = Hydrostatic Pressure (Pa) Prel = Relative Pressure (Pa) Pabs = Absolute Pressure (Pa) Patm = Atmospheric Pressure (Pa) h = Liquid Height (m) ρ = Liquid Density (kg/m3) g = Local Gravity (m/s2)
The above calculation formula is also the working principle of hydrostatic liquid level sensor.
The hydrostatic pressure sensor measures the hydrostatic pressure applied by the hydrostatic head. Output 4-20mA. Use a hydrostatic pressure transmitter to measure the storage tank and pump inlet. And other applications where hydrostatic pressure is used to determine the liquid level.
Hydrostatic Pressure Sensor/Transmitter can also be used with paperless recorder.
In liquid, the pressure generated at a certain depth is generated by the weight of the medium itself above the measurement point. It is proportional to the density of the medium and the local acceleration of gravity.
The formula P = ρgh reflects the proportional relationship between them.
Where P = pressure, ρ = medium density, g = gravity acceleration, h = depth of measurement point.
Therefore, the physical quantity measured by the input liquid level gauge is actually pressure. It can be understood by the calibration unit mH2O of the input level gauge. The actual liquid level must be obtained by conversion after knowing the two parameters of density and gravity acceleration. In the industrial field, such conversion is usually performed by a secondary instrument or PLC.
The Hydrostatic Level Sensor mainly measures corrosive liquids such as hydrochloric acid, hydrogen peroxide, etc. Or chemical and electroplating wastewater. Mainly used in measuring corrosive media. It has the advantages of strong corrosion resistance and stable performance.
There are various methods and techniques for measuring fluid level using hydrostatic pressure sensors. Depending on the installation, they all have advantages and disadvantages. Hydrostatic pressure measurement is an accurate and convenient technique for determining fluid height or volume.
Let’s take a look at each according to the installation location of the hydrostatic pressure sensor.
The Hydrostatic pressure liquid level sensor can be installed to the outside of the container through threads or flange fittings. If necessary, capillaries can also be used.
Submersible type
Picture source: network picture
If the externally mounted sensor is not available, a submersible pressure sensor can be used. The electrical connection with IP68 rating is suitable for long-term permanent immersion. The electronic equipment of the sensor can be protected from the external environment.
DP transmitters are Differential Pressure Transmitters. DP transmitter measures the pressure difference between the gas or liquid at both ends of the transmitter. Output 4~20mA, 0~5V. Used for liquid level, density, and pressure of liquid, gas, and steam.
DP transmitters are different from pressure transmitters as they have 2 pressure interfaces. With flanges, capillaries, valves, brackets, throttle devices. Differential pressure transmitters are used to measure the level, density, and flow of liquids, gases, and vapors. Then convert it into 4–20mADC current signal output.
Although there are various types of pressure transducers, one of the most common is the strain-gage base transducer.
The conversion of pressure into an electrical signal is achieved by the physical deformation of strain gauges, which are bonded into the diaphragm of the pressure transducer, and wired into a Wheatstone bridge configuration.
Pressure applied to the pressure transducer produces a deflection of the diaphragm, which introduces strain to the gages.
The strain will produce an electrical resistance change proportional to the pressure.
How to debug the fault of Hydrostatic pressure transmitter
Total Time:30 minutes
Check the power supply
Check if the power supply of the differential pressure transmitter is reversed, and whether the positive, and negative poles of the power supply are connected correctly.
Measure the power supply
Measure the power supply of the transmitter, whether there is 24V DC voltage. It must ensure that the power supply voltage to the transmitter is ≥12V (that is, the voltage of the transmitter power input terminal is ≥12V). If there is no power supply, check whether the circuit is disconnected, whether the instrument is selected incorrectly (input impedance should be ≤250Ω), and so on.
Check the display meter
If the pressure transmitter is equipped with a meter head, it is necessary to check whether the dislay meter is damaged. You can short-circuit the two wires of the meter head first. If it is normal after a short circuited, it means the head is damaged. If the meter head is damaged, Then you need to change the header.
Check the current
If there is a problem with the differential pressure transmitter, connect the ammeter to the 24V power supply circuit to check if the current is normal. If it is normal, the transmitter is normal. In this case, check if other instruments in the loop are normal.
Connect the power supply
Connect the power supply to the transmitter power input terminal, and connect the power cable to the power supply wiring port. If you still have any question with the selection, application, and use of pressure transmitters, you can just contact our engineer today.
Cryogenic pressure transducer for low temperature pressure measurement. -196℃~+125℃、-260℃/-350c(especial). Sino-Inst offers a variety of Pressure Sensors for pressure measure and…
Hydrostatic pressure transmitter/sensor measures the level, density, and pressure of liquid, gas, or steam. And then converts it into a 4-20 mA DC signal output. The Hydrostatic pressure transmitter can communicate with the HART communicator intelligently. Use it to set, monitor or form a site monitoring system with the host computer. Use a Hydrostatic pressure sensor to measure tanks, processing vessels, headers, pump inlets and others using hydrostatic pressure to determine the liquid height. SI3051HP Hydrostatic pressure transmitters, with working Hydrostatic pressure up to 32Mpa.
Sino-Inst offers a variety of Hydrostatic Pressure Transmitters for industrial pressure measurement. If you have any questions, please contact our sales engineers.
Request a Quote
Please enable JavaScript in your browser to submit the form
Wu Peng, born in 1980, is a highly respected and accomplished male engineer with extensive experience in the field of automation. With over 20 years of industry experience, Wu has made significant contributions to both academia and engineering projects.
Throughout his career, Wu Peng has participated in numerous national and international engineering projects. Some of his most notable projects include the development of an intelligent control system for oil refineries, the design of a cutting-edge distributed control system for petrochemical plants, and the optimization of control algorithms for natural gas pipelines.
Absolute pressure transmitters measure the absolute pressure of the medium in the equipment. Its reference pressure is the absolute value 0 (vacuum), which has nothing to do with atmospheric pressure. Therefore, there is a vacuum sealed chamber on the low-pressure side of the pressure core.
When the fluctuation amplitude of the actual atmospheric pressure affects the process parameters beyond the allowable range, the use of absolute pressure transmitters is necessary. For example, in places where the local average atmospheric pressure deviates greatly from the standard atmospheric pressure.
Sino-Inst offers a variety of pressure senors for industrial pressure measurement. If you have any questions, please contact our sales engineers.
4~20mAdc. output, superimposed HART protocol digital signal (two-wire system)
Power supply:
External power supply 24Vdc., power supply range 12V~45V
Hazardous location installation:
Explosion-proof type ExdIIBT5Gb; Intrinsically safe type ExialCT.4/T5/T6Ga;
Migration characteristics:
At the minimum range (range compression ratio is 40:1), the maximum positive migration zero point is 39/40 times the upper limit of the range. The maximum negative migration zero point can be the lower limit of the range. The absolute pressure transmitter has no negative migration. (No matter what the output form is, after the positive and negative migration, the upper and lower limits of the range shall not exceed the range limit)
Temperature range:
The electronic circuit board works at -40~85℃; the sensitive element works at -40~104℃; the storage temperature works at -40~85℃: with digital display works at -25~75℃ (operation); -40~85℃ (no damage)
Relative humidity:
0~95%
Overpressure limit:
Range 3 to 8 withstand 0 (absolute pressure) ~13.78MPa, pressure transmitter without damage; range 9 pressure does not exceed 31.29MPa; range 0 pressure does not exceed 51.4MPa: normal working pressure is 3.43kPa (absolute pressure) to the upper limit of the range.
Volume change:
Less than 0.16cm3
Damping:
The time constant is adjustable between 0.2~32.0s.
Accuracy:
±0.1%, ±0.075%
Stability:
±0.1% of the maximum range/12 months
Temperature effect:
The temperature error including zero point and range is ±0.2% of the maximum range/20℃
Power supply effect:
Less than 0.005%/V of the output range.
Vibration effect:
In any axis, the frequency is 200Hz, and the error is ±0.05%/g of the maximum range.
Load effect:
As long as the voltage of the input transmitter is higher than 12V, there is no load influence in the load working area.
Installation position effect:
The maximum zero position error that can be generated is no more than 0.2kP, which can be eliminated by correction without affecting the range; the rotation of the measuring body relative to the flange has no effect.
Note: Under no migration, 316 stainless steel isolation diaphragm and other standard test conditions.
Order Guide
Model
Transmitter type
GP
Pressure transmitter
AP
Absolute pressure transmitter
Code
Scale range
2
0-0.10~3.5kPa(0-10~350mmH2O)
3
0-0.8~8.0kPa(0-80~800mmH2O)
4
0-4.0~40kPa(0-400~4000mmH2O)
5
0-20~200kPa(0-2000~20000mmH2O)
6
0-70~700kPa(0-0.7~7kgf/cm2)
7
0-210~2100kPa(0-2.1~21kgf/cm2)
8
0-700~7000kPa(0-7.0~70kgf/cm2)
9
0-2.1~21MPa(0-21~210kgf/cm2)
0
0-4.1~41MPa(0-41~4100kgf/cm2)
Code
Output form
E
Linear output 4-20mAdc
SF
Linear output 4-20mAdc+HART signal,Full function buttons on site
The pressure expressed with complete vacuum as the zero standard is called absolute pressure. Absolute pressure has only positive values.
What is absolute pressure transmitter?
Absolute pressure (AP) transmitter measure relative to perfect (full) vacuum pressure (absolute zero pressure).
Therefore, AP transmitters are not affected by fluctuations in the local atmosphere.
All absolute pressure measurements are positive. The letter ‘a’ or the abbreviation ‘abs’ in the unit of measure (i.e., inH₂O(abs) or psia) indicates an absolute pressure measurement.
Any critical storage and delivery (toxic gases) will change due to atmospheric conditions. So these systems must be accurate and use static references.
Absolute pressure transmitters are used in applications where the pressure of a gas or liquid is isolated from changes in atmosphere. For example, when testing a sealed pressure vessel for leaks for a long time.
How do absolute pressure sensors work?
The absolute pressure transmitter is mainly composed of two parts. One part is directly connected to the side to be measured. The other side is designed as an absolute vacuum reference chamber. This makes the two compartments form Absolute pressure. When the pressure on both sides is inconsistent, the difference signal will be transmitted through a special transmission line. The computer system in the background can calculate the difference. The pressure value on the measured side is directly displayed.
Applications for Absolute Pressure Sensors
Absolute pressure sensors and absolute pressure gauges are often used for industrial high-performance vacuum pumps that need to be monitored.
It is used to vacuum pack medical products in a clean environment. To ensure hygienic and sterile delivery to hospitals and doctors.
In the food industry, vacuum packaging can be used when the highest possible vacuum is required to prevent oxygen from deteriorating perishable foods. This greatly extends the flavor and shelf life of the product.
In meat packaging, a vacuum that meets the requirements must be generated. This can safely guarantee the longest shelf life.
And pressure sensors affected by the atmosphere cannot monitor the high end of the vacuum.
Applications that require true absolute pressure sensors and instruments can also be found in scientific laboratories, universities, military and aerospace industries.
Sino-Inst supplies Direct Mount Pressure / Absolute Pressure Transmitter.
SMT3151 Absolute Pressure Transmitter
SM3151 TAP Pressure-absolute pressure transmitter shape and installation dimensions
Absolute pressure transmitter calibration
First make a 4-20mA fine adjustment. It is used to calibrate the D / A converter inside the transmitter. Because it does not involve sensing components, no external pressure signal source is required.
Finally, re-quantify the range. By adjusting the analog output 4-20mA and the external pressure signal source. Its function is exactly the same as the zero (Z) and range (R) switches on the transmitter shell.
Absolute pressure transmitter VS Gauge pressure transmitter
Absolute pressure transmitter
Absolute pressure transmitter can realize absolute pressure measurement in equipment such as degassing system, distillation tower, evaporator and crystallizer, and allows pressure under 10Mpa. The δ chamber side of the absolute pressure transmitter receives the measured absolute pressure signal. The other side is sealed into a high vacuum reference chamber. Then convert it into 4 ~ 20mA DC signal output.
A gauge pressure transmitter in the general sense is mainly composed of a load cell sensor (also called a pressure sensor), a measurement circuit and a process connection. It can convert the physical pressure parameters such as gas and liquid felt by the load cell sensor into standard electrical signals (such as 4 ~ 20mADC, etc.), and provide secondary indicators such as alarm indicators, recorders, and regulators for measurement and indication. And process regulation.
More Featured Pressure Transmitters and Pressure Measurement Solutions
Sino-Inst is Chinese manufacturer of absolute pressure transmitters. SMT3151AP absolute pressure transmitters, are our main products, which are widely used in USA, South Africa, and other countries.
Contact us any time, if you need the quotation or technical support.
Request a Quote
Please enable JavaScript in your browser to submit the form
Wu Peng, born in 1980, is a highly respected and accomplished male engineer with extensive experience in the field of automation. With over 20 years of industry experience, Wu has made significant contributions to both academia and engineering projects.
Throughout his career, Wu Peng has participated in numerous national and international engineering projects. Some of his most notable projects include the development of an intelligent control system for oil refineries, the design of a cutting-edge distributed control system for petrochemical plants, and the optimization of control algorithms for natural gas pipelines.
High Temperature Pressure Transducer is specially used for high temperature medium pressure measurement. Such as high temperature liquid, gas, steam, etc. The highest temperature is customized to 850℃.
High temperature resistant pressure sensor is selected as the signal measurement element. The transmitter structure includes a heat dissipation structure, and the high-precision signal processing circuit is located in the stainless steel housing. The sensor output signal is converted into a standard output signal, such as 4-20mA.
Sino-Inst is a manufacturer of high temperature pressure transducer in China. Committed to the manufacture, sales and engineering support of high temperature pressure sensors.
Features of SI-2088 High Temperature Pressure Transducer
Working temperature –55 …850 ° C, customizable;
Pressure range can also be customized, such as 150MPa high pressure;
The sensor and pressure interface are fully welded structures, and the housing protection level is IP65;
The material in contact with the medium is stainless steel, which has good corrosion resistance;
It is suitable for pressure measurement of high temperature, low temperature and normal temperature media, and can work stably for a long time;
It is impact-resistant, vibration-resistant and corrosion-resistant;
High temperature pressure transducer for measuring lowest pressure fluctuations in a harsh environment up to 850 ° C. For applications in hazardous areas, the sensor is available with intrinsically safe Ex-ia and non-incendive Ex-nA certifications.
Specifications of High Temperature Transducer
Range:
0 ~ 1KPa ~ 10KPa ~ 400KPa, -0.1 ~ 0 ~ 1 ~ 60 (MPa), 0 ~ 10KPa ~ 100MPa, Other pressure ranges can be customized.
SI2088 High Temperature Pressure Transducer used in the fields of steam, oil, boiler and heat energy exchange. Realize the measurement of liquid, gas and vapor pressure.
Application of high temperature pressure transmitter in steam pipeline
Pure steam pipes have good mechanical properties and thermal insulation properties. Under normal circumstances, it can withstand a high temperature of 120 ° C. It can withstand a high temperature of 180 ° C by modification or in combination with other thermal insulation materials.
It is suitable for thermal insulation of various cold and hot water high and low temperature pipelines. The pressure detection in the steam pipeline is very important. And because of the high temperature characteristics in the pipeline. Therefore, it is suitable to use the high temperature pressure transmitter designed by our company for such occasions.
In addition, in the steam system, water hammer (Water Hammer) is one of the main hazards causing casualties. Thereby eliminating the hazard of water hammer. This shows that daily pressure monitoring of the pipeline is very important.
Precautions for the correct use of steam pressure transmitters
1. Prevent the steam pressure transmitter from contacting with corrosive or overheated media; 2. Prevent dross from depositing in the conduit; 3. When measuring gas pressure, the pressure port should be opened at the top of the pipeline, and the pressure transmitter should also be installed at the top of the pipeline, so that the accumulated liquid can be easily injected into the process pipeline; 4. The pressure guiding pipe should be installed in a place with small temperature fluctuation; 5. When measuring steam or other high-temperature media, a condenser such as a buffer tube (coil) should be connected, and the working temperature of the transmitter should not exceed the limit; 6. When freezing occurs in winter, the transmitter installed outdoors must take anti-freezing measures to avoid the expansion of the liquid in the pressure port due to the frozen volume, resulting in the loss of the sensor; 7. When wiring, pass the cable through the waterproof connector or the flexible tube and tighten the sealing nut to prevent the rainwater etc. from leaking into the transmitter housing through the cable.
High Temperature Pressure Transducers vs. Cooling Elements
Generally, the design method is to reduce the temperature near the pressure transmitter by incorporating mechanical cooling components to dissipate heat.
The cooling assembly may be filled with oil and isolated from the process medium by the isolation diaphragm.
Alternatively, the cooling assembly may include a hollow tube. The shape of the hollow tube is designed to increase heat transfer. This allows the process medium that is allowed to pass to be lowered to a much lower temperature.
The cooling element usually relies on the principle of convection heat transfer. This convective heat transfer principle is a mechanism for transferring heat due to the movement of fluid. In contrast, conductive heat transfer is the transfer of energy due to molecular vibration. In addition to cooling elements, convection is also used in many other engineering practices.
The cooling element may be able to reduce the temperature of the medium. This is usually a much cheaper solution than high temperature sensors. It is assumed that the medium density is not greatly affected by temperature changes within the normal operating range. Then this method can keep the pressure unchanged.
The cooling element usually works in air and water, but it is not suitable for oily media such as hydraulic oil. High temperature sensors must be used in these applications because the viscosity of this medium is highly temperature dependent.
The cooling element should be made of stainless steel so that most process media have maximum corrosion resistance. The nickel content of the steel is usually 1.25% and the chromium content is 0.65% to 0.8%.
The cooling element should withstand a maximum pressure of 5,000 psi at 38 ° C (100.4 ° F) and a maximum pressure of 3500 psi at 400 ° C (752 ° F). It also reduces the liquid process temperature at the sensing element from 260 to 38 ° C (500 to 100.4 ° F).
600 ℃ High Temperature Remote Pressure transmitter / Differential Pressure Transmitter
Greatly expanded the application range of ultra-high temperature pressure / differential pressure measurement. It can be widely used in coal chemical industry and CSP industry.
How to Select a Pressure Transducer For High Temperature Medium
Define your high temperature pressure transmitter requirements using this checklist:
Sino-Inst produces and supplies pressure transmitters that meet various extreme temperature conditions. In addition to customizing high temperature pressure transmitters, we can also customize ultra-low temperature pressure transmitters, ultra-high pressure pressure transmitters, etc.
Our high temperature pressure transmitters are suitable for high temperature applications such as steam, food processing and engine monitoring. We widely serve users in various countries and industries.
If you have a special request, you can just contact us for Technical Support.
Request a Quote
Please enable JavaScript in your browser to submit the form
Wu Peng, born in 1980, is a highly respected and accomplished male engineer with extensive experience in the field of automation. With over 20 years of industry experience, Wu has made significant contributions to both academia and engineering projects.
Throughout his career, Wu Peng has participated in numerous national and international engineering projects. Some of his most notable projects include the development of an intelligent control system for oil refineries, the design of a cutting-edge distributed control system for petrochemical plants, and the optimization of control algorithms for natural gas pipelines.
Gauge Pressure Transmitter/Transducer is a commonly used pressure measurement process instrument in industry. The gauge pressure transmitter measures the pressure signal at the reference end of atmospheric pressure.
An industrial gauge pressure transmitter is commonly used to monitor the process pressure of liquid, gas, steam, etc.
Sino-Inst offers a variety of Gauge pressure transmitters for industrial pressure measurement. If you have any questions, please contact our sales engineers.
High accuracy: The pressure transmitter can perform high-accuracy measurements within the measurement range of 0~60MPa.
Excellent overpressure performance: Can withstand 2 times the pressure range.
Intelligent static pressure compensation and temperature compensation protect the transmitter from the influence of temperature, static pressure and overpressure, reducing errors.
LCD digital display with backlight
Built-in three-button quick operation and local adjustment function
Various anti-corrosion materials are available
Multi-faceted self-diagnosis function
Optional signals 0-10V, 4-20mA, RS485, HART protocol, etc.
Common Industrial Applications of Gauge Pressure Transmitter
Gauge pressure transmitter is the most commonly used detection instrument in industrial process control, which is widely used in various automatic control systems. Such as aerospace, military industry, petrochemical, chemical industry, oil well, electricity, shipbuilding, building materials, pipelines and many other industries.
It is generally used to measure pressure or absolute pressure in environments where the medium temperature is not too high, the corrosiveness is not strong, the viscosity is not high, and it is not easy to crystallize.
If low temperature, high temperature, corrosive medium measurement is required. Please contact our engineers for customization!
SMT3151 TGP-Gauge Pressure Transmitter / Transducer is a diffusion silicon pressure transmitter. The working principle of the diffused silicon pressure sensor is based on the piezoresistive effect.
Using the principle of piezoresistive effect, the pressure of the measured medium directly acts on the diaphragm of the sensor (stainless steel or ceramic).
Make the diaphragm produce a slight displacement proportional to the pressure of the medium. To change the resistance value of the sensor. Use electronic circuits to detect this change. And convert and output a standard measurement signal corresponding to this pressure.
Difference between absolute, gauge, and differential pressure
Comparison of absolute, gauge and differential pressure
Absolute pressure
Absolute pressure is referred to as the vacuum of free space (zero pressure). In practice, absolute piezoresistive pressure sensors, measure the pressure relative to a high vacuum reference, sealed behind its sensing diaphragm.
The vacuum has to be negligible compared to the pressure to be measured. Sino-Instrument’s absolute pressure sensors, offer ranges from 1 bar or even 700 mbar as well as barometric pressure ranges.
Gauge pressure
Gauge pressure is measured relative to the ambient atmospheric. The average atmospheric at sea level is 1013.25 mbar. Changes of the atmospheric, due to weather conditions, or altitude influences the output of a gauge pressure sensor.
A gauge pressure higher than ambient pressure is referred to as positive pressure. If the measured pressure is below atmospheric, it is called negative or vacuum gauge pressure. In general, a vacuum is a volume of space that is essentially empty of matter.
According to its quality vacuum is divided into different ranges such as an e.g. low, high and ultra high vacuum.
Differential pressure
Differential pressure is the difference between any two process pressures p1 and p2. Differential pressure sensors must offer two separate pressure ports, with a tube or thread. Sino-Instrument’s amplified pressure sensors, are able to measure positive and negative pressure differences. i.e. p1>p2 and p1<p2.
These sensors are called bidirectional differential pressure sensors, with ranges of e.g. -1…+1.0 bar or -2.5…+2.5 mbar. In contrast, unidirectional differential pressure sensor only operate in the positive range (p1>p2). E.g. from 0…1.0 bar or 0…2.5 mbar. And the higher has to be applied to the pressure port defined as “high pressure”.
Gauge Pressure VS Absolute Pressure
Gauge pressure refers to pipeline pressure. It refers to the pressure measured with pressure gauges, vacuum gauges, U-shaped tubes and other instruments, also called relative pressure). “Gauge pressure” starts from atmospheric pressure.
The pressure directly acting on the surface of the container or object is called “absolute pressure”. The absolute pressure value starts with absolute vacuum. Absolute pressure actually refers to the gauge pressure plus the local atmospheric pressure (generally a standard atmospheric pressure can be 101.3Kpa).
Absolute pressure = gauge pressure + one atmosphere If the unit is MPa, absolute pressure = gauge pressure + 0.1MPa
Transmitters can convert physical signals into electrical signals. For example, our pressure transmitter can convert pressure signals into 4-20mA. Liquid level transmitter can convert liquid level signals into 4-20mA.
Gauges are generally mechanical. There is no output of electrical signals. For example, pressure gauges and liquid level gauges. The measurement results can be measured and read intuitively.
When selecting a pressure transmitter, the concept of pressure type is involved: absolute pressure, gauge pressure, negative pressure and differential pressure.
Absolute pressure transmitter measures the absolute pressure of the medium in the equipment. Its reference pressure is an absolute value of 0. It has nothing to do with atmospheric pressure. Therefore, there will be a vacuum sealed cavity on the low-pressure side of the pressure core.
Gauge pressure transmitter measures the pressure based on atmospheric pressure. One side of the pressure transmitter is connected to the atmosphere, and the other side is connected to the measured pressure, so the reference pressure side is open to the atmosphere. It is generally used to measure the liquid level of pipelines and non-pressure tanks.
If you pay close attention to the outer shell of some gauge pressure transmitters, it is not difficult to find some small holes on it. These vents are reserved to keep the reference side connected to the atmosphere.
More Featured Pressure Transmitters and Pressure Measurement Solutions
We at Sino-Inst manufacture and supply various types of gauge pressure transmitters for various industries. Customized production is available based on your measurement requirements, including pressure range, temperature, accuracy, signal output, mounting thread, material, etc.
If you need to purchase a gauge pressure transmitter, or have any technical questions, please feel free to contact us.
Request a Quote
Please enable JavaScript in your browser to submit the form
Wu Peng, born in 1980, is a highly respected and accomplished male engineer with extensive experience in the field of automation. With over 20 years of industry experience, Wu has made significant contributions to both academia and engineering projects.
Throughout his career, Wu Peng has participated in numerous national and international engineering projects. Some of his most notable projects include the development of an intelligent control system for oil refineries, the design of a cutting-edge distributed control system for petrochemical plants, and the optimization of control algorithms for natural gas pipelines.