How to convert a 4-20mA to 0-10V /1-5V signal?

4-20mA to 0-10v voltage, this is I/V conversion. That is current-voltage conversion, usually used for long-distance signal transmission in the industry.

How to convert a 4-20mA to 0-10V /1-5V signal?

There are two methods: one is to do it yourself with an operational amplifier. The other is to buy ready-made products, such as a 4-20MA/0-10V current-to-voltage isolation converter.

How to convert a 4-20mA to 0-10V /1-5V signal?

4-20mA is the standard output of our measuring instrument. Such as pressure transmitter, temperature transmitter, flow meter, liquid level transmitter, and so on.

In the field of industrial measurement and control, we often encounter the following problems:

How to convert 0-5V to 4-20mA, 0-20mA or 4-24mA?

How to convert 0-10V to 4-20mA, 0-20mA or 4-24mA?

How to transform ±5V, ±10V AC voltage signal into 4-20mA, 0-20mA, or 4-24mA DC current signal?

4-20mA means that the minimum current is 4mA and the maximum current is 20mA.

The industry generally needs to measure various non-electrical physical quantities, such as temperature, pressure, speed, angle, etc. They all need to be converted into analog electrical signals before they can be transmitted to the control room or display equipment hundreds of meters away. This device that converts physical quantities into electrical signals is called a transmitter. The most widely used in the industry is to use a 4-20mA current to transmit analog quantities.

4-20mA

  • The general input impedance of 4-20mA is 250-300 ohm, which is not easy to have interfered. But maintenance measurement is more troublesome;
  • 4-20ma DC signal can provide power. In addition, it is not affected by the load size within a certain range, and has strong anti-interference ability.
  • 4-20mA can realize two-wire transmission, saving wires.
  • The current signal is suitable for long-distance transmission, but the current signal has weak anti-interference ability, and shielded wires are generally used.

0-10V

  • 0-10v are generally high-impedance inputs and are susceptible to interference. But maintenance, measurement and calculation are all very convenient.
  • 0-10V, is active, three-wire system, or four-wire system.
  • The voltage signal is stable and anti-interference is strong, but it is not suitable for long-distance transmission (with voltage drop);

The 4~20ma signal is the sensor transmission signal commonly used in industrial transmitters. It does not have a fixed-line voltage. The current is constant during transmission and the voltage changes with the load.

For our measurement and control instruments, it depends on whether your instrument wiring is a four-wire system or a two-wire system.

The four-wire system may be AC220V or DC24V;
Two-wire system or three-wire system, generally DC24V.

Read more about: What Is 0-10V Signal Output?

4-20mA standard signal conversion

Common standard analog signals are: 0-5V, 0-10V, ±5V, ±10V, 4-20mA, 0-20mA or 4-24mA. Common transmitters or sensors use one or more of the above formats to output standard signals.

Common secondary meters or acquisition cards generally accept input signals of one or more of the above formats.

When the output signal of the transmitter or sensor is different from the input signal format of the secondary instrument or acquisition card, we need to add a converter between them.

Because the 4-20mA standard signal has the advantages of strong anti-interference ability and no attenuation in the transmission process, it has been widely used in the field of measurement and control.

Often in order to achieve interface compatibility or improve electromagnetic compatibility, it is necessary to convert 0-5V, 0-10V and other standard voltage signals into 4-20mA standard current signals. Or the 4-20mA current signal needs to be converted into a 0-5V or 0-10V standard voltage signal suitable for the input of the acquisition card.

How to convert a 4-20mA to 0-10V /1-5V signal?

I have a pressure transmitter here that outputs a current of 4-20mA. As the input signal of the inverter. Now it is required to change the input signal of the inverter to a voltage signal. That is, the current of 4-20mA should be replaced with a voltage of 0-5V or 0-10V. The inverter has two inputs: 0-5V and 0-10V. Excuse me, how can it be transformed?

Answer: There are two schemes to achieve:

1.Use a hardware circuit to convert the input 4-20mA current signal into 0-5V or 0-10V voltage signal. See the circuit diagram below:

Connection:

  1. Select the A input port: connect A+ and RA together, connect an external 4-20mA current input signal, and connect the A- terminal to the PLC common point M. A input port is set to 0~20mA current input mode.
  2. The analog output port uses voltage output port V0, its M0 port is connected to the common terminal M, and the output port is set to voltage output mode: 0~10V (or 0~5V).

2.Use a signal converter

The signal converter converts the DC current or voltage signals of various devices on the site into the required DC signals for isolation and transmission and then outputs them to other instruments. The signal isolator can effectively eliminate ground return. Solve the problems of industrial field interference and signal conversion, transmission, and matching.

It is widely used in data acquisition, signal transmission and conversion, PLC, DCS, and other industrial measurement and control systems in electrical, power, telecommunications, steel, petrochemical, sewage treatment, environmental protection engineering, aerospace, building automation, and other fields. It is used to complete and supplement the system simulation I/O plug-in function. Increase
The applicability of the system and the reliability of the on-site environment.

Main Specifications

  • Measurement: DC current, DC voltage, etc.
  • Accuracy: ≤±0.1% F·S
  • Power consumption: <1W (when 24VDC power supply)
  • Impedance: current input ≤100Ω, voltage input ≥500KΩ
  • Power supply: DC24V, AC220V or customized
  • Isolation: Input, output, and power supply are completely isolated
  • Support live hot swap operation. Easy to unload, high precision, high linearity, strong anti-interference
  • Long-term work stability
Input signalEnter parameter codeOutput 1Output 2Power supply
A DC power supply
V DC voltage
Current Range
A420 4-20mA
A020 0-20mA
A010 0-10mA
T customer self-determined;

Or voltage range
V0100-10V
V15 1-5V
V075 0-75mV
V6
0-600V
T customer self-determined
V010 0-10V
V15 1-5V
A4204-20mA
A0100-10mA
T customer self-determined
V0100-10V
V151-5V
A420 4-20mA
A0100-10mA
T customer self-determined
No input
D DC24V
A AC220V
T customer self-determined

No matter which WaterFlow Meters you choose. The signal output by WaterFlow Meters, such as 4-20mA. The flow signal can be connected to a paperless recorder. Carry out multi-channel flow signal monitoring.

Our paperless recorder, also known as Digital Chart Recorder. also has such a function. Support signal input and output. You can configure appropriate functions according to your own needs. What Is A Digital Chart Recorder?

Related Products

Related Blogs

What Is a Smart Pressure Transmitter?

What Is a Smart Pressure Transmitter? Smart pressure transmitter is also called Smart pressure sensor or Smart pressure transducer. Smart pressure transmitter is the best pressure measuring instrument. It is…

High Temperature Pressure Transducer with Best Price

High Temperature Pressure Transducer is also called High Temperature Pressure Sensor, or High Temperature Pressure Transmitter. The High Temperature Pressure Transducer is used for applications where the medium temperature exceeds…

What does intrinsically safe mean?

Intrinsically safe type is an explosion-proof type of electrical equipment. When purchasing electrical equipment, do you often hear about intrinsic safety? For example, when ordering pressure transmitters or flow meters…

What is a pressure sensor?

What is a pressure sensor? A pressure sensor is a device that senses a pressure signal and converts the pressure signal into a usable output electrical signal according to certain…

What does SCADA stands for?

What does SCADA stand for? SCADA is the abbreviation of Supervisory Control And Data Acquisition. Namely data acquisition and monitoring control system. SCADA system is also called monitoring configuration software,…

What is a PID controller?

What is a PID controller? A PID controller is an instrument used in industrial control applications to regulate temperature, flow, pressure, speed, and other process variables. PID is the abbreviation…

Cryogenic Pressure Transducers

Cryogenic pressure transducer for low temperature pressure measurement.  -196℃~+125℃、-260℃/-350c(especial). Sino-Inst offers a variety of Pressure Sensors for pressure measure and control. If you have any questions, please contact our sales…

High Frequency Dynamic Pressure Sensor

Dynamic pressure sensor, the transmitter is a high frequency sensor. Sino-Inst offers a variety of  Dynamic Pressure Sensors for pressure measurement. If you have any questions, please contact our sales…

Kerosene Gasoline/ Kerosene Flow Meter

A kerosene flow meter is a flow meter that can be used to measure the flow of kerosene. Kerosene is a common oil in industrial production. It is an organic…

Slurry Flow Meter

Flow Meter for Slurry Application Slurry is a product of domestic sewage and industrial wastewater treatment. Slurry consists of solid impurities, a slurry of suspended substances. The main characteristic of…

Clamp on Water Flow Meter

What is Clamp on Water Flow Meter? Clamp on Water Flow Meter is also known as the clamp-on ultrasonic flowmeter. Using an ultrasonic flowmeter to measure water flow rate is…

Digital Flow Meter for Argon Gas

What is Digital Flow Meter for Argon Gas? Digital flow meter for argon gas refers to a flow meter that can be used for detection, display, transmission, and signal output…

Guide for Digital Fuel Flow Meter

Digital Fuel Flow Meter is a flow meter dedicated to measuring fuel, diesel, gasoline, and petroleum. Digital Fuel Flow Meter generally has a digital display or signal output. Such as…

Water Flow Measurement for Pipes and Open Channels

Water flow measurement is common in both industry and life. You may often hear about the use of electromagnetic flowmeters to measure wastewater. The clamp-on ultrasonic flowmeter measures large water…

Sino-Instrument offers a variety of transmitters and sensors that support signal output. Including 4-20mA, 0-10V, 1-5V, etc.

About 30% of these are 4-20ma Pressure Transducers, 30% are Flow Meters, and 20% are Level Transmitters, 20% are 4-20ma Temperature transmitters.

Sino-Instrument is a globally recognized supplier and manufacturer of Pressure Transducers, located in China.

The top supplying country is China (Mainland), which supply 100% of Pressure Transducers respectively.

Sino-Instrument sells through a mature distribution network that reaches all 50 states and 30 countries worldwide.

Low-Pressure Transducers products are most popular in Domestic Market, Southeast Asia, and Mid East.

You can ensure product safety by selecting from certified suppliers, with ISO9001, ISO14001 certification.

What does SCADA stands for?

What does SCADA stand for?

SCADA is the abbreviation of Supervisory Control And Data Acquisition. Namely data acquisition and monitoring control system. SCADA system is also called monitoring configuration software, which is widely used in enterprise equipment management of equipment automatic operation.

What is a SCADA system?

SCADA is a data acquisition and monitoring control system. The scada system is a computer-based production process control and scheduling automation system. It can monitor and control the operating equipment on site. Because each application field has different requirements for scada, the development of scada system in different application fields is not exactly the same.

The scada system is the most widely used in the power system, and the technology development is also the most mature. It is one of the most important subsystems of the energy management system (EMS system). It has the advantages of complete information, improved efficiency, correct control of system operation status, accelerated decision-making, and can help quickly diagnose system fault status. Now it has become an indispensable power dispatcher. Missing tools.

The scada system plays an irreplaceable role in improving the reliability, safety and economic benefits of power grid operation, realizing the automation and modernization of power dispatching, and improving the efficiency and level of dispatching.

How does SCADA work?

The SCADA system deploys multiple software and hardware elements, allowing industrial organizations to: monitor, collect and process data.

Connect and control machines and equipment such as valves, pumps, motors, etc. through HMI (Human Machine Interface) software.

Log the event to a log file.

In the basic SCADA architecture, sensor or manual input information is sent to PLC (Programmable Logic Controller) or RTU (Remote Terminal Unit), and then sent to a computer with SCADA software.

SCADA software analyzes and displays data to help operators and other workers reduce waste and improve the efficiency of the manufacturing process.

An effective SCADA system can greatly save time and money. Many case studies have been published, highlighting the benefits and savings of using modern SCADA software solutions such as ignition.

What is SCADA used for?

The SCADA system has a wide range of applications, and it can be used in the fields of data acquisition, monitoring and control and process control in electric power, metallurgy, petroleum, chemical, gas, railway and other industries. Its functions mainly focus on four aspects: real-time collection of production data, process monitoring of production equipment, abnormal alarms of production equipment, data analysis, data reports and dashboard display. Its characteristics mainly reflect the following aspects.

  1. It supports more than 5000 communication protocols and meets the communication requirements of 99.99% of controllers and instruments on the market. Get through the automated hardware system and the information transmission of the information software system.
  2. Isolate office network IP and industrial equipment IP in hardware to avoid IP conflicts.
  3. Intuitive display of production dynamics, direct or indirect control of on-site equipment, to meet the needs of visual management.
  4. Perform statistical analysis of data and display it through the dashboard.

The SCADA system is centered on the data collected in the production process. It is related to the distribution of people, machines, materials, methods, environments, testing, and R&D. It is based on the data generated during the operation of production equipment. It is also a big Most companies are most concerned about.

Secondly, the SCADA system is aimed at the application needs of the above-mentioned manufacturing enterprises. At the same time, it will give play to its own unique advantages to bring improvements and benefits to the enterprise.

  1. Help companies collect all kinds of data in the production process in real time. Instead of manual operations, it also avoids certain losses caused by personnel errors. Not only improves work efficiency, but also enables real-time monitoring of production All abnormal data in the process provides another layer of guarantee for the quality of the product.
  2. The SCADA system provides the production data of each device, which makes the production situation intuitive and clear, and facilitates the analysis of the production situation by the management personnel of the enterprise, and at the same time helps the enterprise optimize the production, making the production plan more scientific and reasonable.
  3. Realize the digital and intelligent improvement of the management process of products, production schedule, production efficiency, quality information, equipment operation, etc., and optimize the digital management and control capabilities of the production process.
  4. During the company’s external publicity and visit, the company’s image and professionalism will be improved by explaining the application and advantages of the system for the company.

Extended reading: PID Controller Working Principle

The difference between SCADA, DCS and PLC

SCADA and DCS are a concept, and PLC is a product, the three are not comparable:

  1. PLC is a product, which can form SCADA, DCS;
  2. DCS is developed from process control, and PLC is developed from relay-logic control system;
  3. PLC is equipment, DCS and SCADA are systems.

In a narrow sense, DCS is mainly used for process automation. PLC is mainly used for factory automation (production line). SCADA is mainly used for wide-area needs. Such as oil fields, which stretch for thousands of miles of pipelines.

If they are unified from the perspective of computers and networks, the main reason for the differences lies in the application requirements. DCS often requires advanced control algorithms.

For example, in the oil refining industry, PLC requires high processing speed. Because it is often used in interlocking, even fail-safe systems. SCADA also has some special requirements. Such as vibration monitoring, flow calculation, peak and valley adjustment, and so on.

Therefore, you can simply think:

  • SCADA is the dispatch management layer
  • DCS is the plant management
  • PLC is the field device layer

Sino-Inst offers over controllers for Industrial data recording and analysis.

It is widely used in hydropower, tap water, petroleum, chemical, machinery, hydraulic and other industries to measure, display and control the pressure of fluid media on site.

A wide variety of controllers are available to you, such as free samples, paid samples.

Sino-Inst is a globally recognized supplier and manufacturer of controllers, located in China.

What is a PID controller?

What is a PID controller?

A PID controller is an instrument used in industrial control applications to regulate temperature, flow, pressure, speed, and other process variables. PID is the abbreviation for proportional integral derivative. PID controllers use a control loop feedback mechanism to control process variables and are the most accurate and stable controllers.

What is meant by PID?

In the manufacturing process, if the equipment or space needs to be kept at a constant temperature, then PID is the best choice.
What is meant by PID?

P: Proportion, the input deviation is multiplied by a coefficient;
I: Integral, perform an integral operation on the input deviation;
D: It is differentiation, which performs a differential operation on the input deviation.

Mathematical description of PID:
u(t)=kp[e(t)+1/TI∫e(t)dt+TD×de(t)/dt].
Where
E(t) is the error signal;
U(t) is the output signal of the controller;
kp is the ratio coefficient;
TI is the integral time constant;
TD is the derivative time constant.

PID control is a kind of negative feedback control. Because in the feedback control system, the automatic regulator and the controlled object form a closed loop.

There are two possible situations when connected into a closed-loop: positive feedback and negative feedback.

The effect of positive feedback aggravates the imbalance of the inflow and outflow of the controlled object, resulting in system instability;

Negative feedback is to alleviate the imbalance, so as to correctly achieve the purpose of automatic control.

The instrument used in PID control is a PID regulator (also called a PID controller). Simply put, the PID control algorithm determines the price of the PID regulator. The temperature controller is also a kind of control algorithm that is more suitable for temperature control PID regulator. Its control algorithm is different from the regulator control algorithm commonly used for process control such as flow and pressure.

PID Controller Working Principle

PID controller, Promotion Integration Differentiation, that is, proportional-integral-derivative controller. It is mainly through the setting of three parameters Kp, Ki, and Kd. It is used to control the basic linearity and dynamic characteristics that do not change with time.

PID controller is based on the PID control principle to adjust the deviation of the entire control system. So that the actual value of the controlled variable is consistent with the predetermined value required by the process. Different control laws are applicable to different production processes. The corresponding control law must be selected reasonably. Otherwise, the PID controller will not achieve the expected control effect.

PID controller is a kind of feedback loop component that is very common in industrial control applications. This controller compares the collected data with a reference value. This difference is then used to calculate the new input value. The purpose of this new input value is to allow the system data to reach or maintain the reference value.

The PID controller can adjust the input value based on historical data and the occurrence rate of differences. This can make the system more accurate and more stable. It can be proved by mathematical methods. When other control methods lead to system stability errors or process repetitions, a PID feedback loop can keep the system stable.

Video source: https://www.youtube.com/watch?v=v27xYKdZUzI

PID Temperature Controller Working Principle

Proportional integral derivative (PID) controllers can be used as a means to control temperature, pressure, flow, and other process variables. As the name suggests, PID controllers combine proportional control with additional integral and derivative adjustments. Help the equipment to automatically compensate for changes in the system.

Computer-controlled thermostat: Using PID fuzzy control technology* Use advanced digital technology to form a fuzzy control to solve the problem of inertial temperature error through the combination of Pvar, Ivar, and Dvar (proportional, integral, derivative).

Many manufacturers often encounter the problem of inertial temperature error in the process of using the thermostat. Suffering cannot be solved, relying on manual pressure adjustment to control the temperature.

PID controller Applications

The PID controller is the most widely used controller. There are many digital pid algorithms.
PID controllers are mostly used for temperature control. But there are other more advanced and lower-level programs.

The PID regulator used by the instrument ranges from tens of yuan to tens of thousands of yuan. The difference lies in IO precision, type, algorithm complexity, operation speed, and additional functions.

The PID algorithm used by PLC is also different. Usually simpler than meters.

In the field of temperature control, there are PID meters, smart fuzzy meters, fuzzy PID meters, and even industrial computers.

If the temperature control also needs to control the temperature rise curve, then a simple PID meter is not suitable. A set value generator is also needed, and most intelligent thermostats with this function are built-in.

  1. Classic PID control algorithm regulator

For example, the accuracy is 0.5%. The intelligent regulator is used for process control such as pressure, flow, and liquid level to achieve good control effects. The temperature control effect is not good when used for temperature control.

  1. Fuzzy control algorithm regulator

Such as accuracy of 0.3%. The fuzzy PID regulator is used for pressure, flow, liquid level, and other process control effects. It is best for temperature control in plastic/food/packaging machinery, heating furnaces, and other industries with a constant temperature effect of ±1℃. PID parameter self-tuning effect is excellent It is the classic PID control algorithm regulator. The price of the two is the same.

  1. Artificial intelligence control algorithm regulator

Such as an accuracy of 0.2%. This artificial intelligence regulator is suitable for all automatic control sites and can achieve very good control effects. The best constant temperature effect for temperature control is ±0.1℃. The effect of PID parameter self-tuning is better than the adjustment of classic PID control algorithms and fuzzy control algorithms The price is slightly higher. Product performance is no different from European and American products.

  1. Temperature controller

Such as an accuracy of 0.2%. The temperature controller is dedicated to the temperature control of various large lag working conditions (such as kilns, electric furnaces). The temperature is constant and does not fluctuate. The performance is not much different from that of Japanese island power products. The cost is lower.

Related measurement and control instruments

You may like:

Sino-Inst offers over 10 PID controllers for Industrial data recording and analysis.

It is widely used in hydropower, tap water, petroleum, chemical, machinery, hydraulic and other industries to measure, display and control the pressure of fluid media on site.

A wide variety of PID controllers are available to you, such as free samples, paid samples.

Sino-Inst is a globally recognized supplier and manufacturer of PID controllers, located in China.

What is a pressure sensor?

What is a pressure sensor?

A pressure sensor is a device that senses a pressure signal and converts the pressure signal into a usable output electrical signal according to certain rules.

Pressure sensors have a variety of structural types. Common types are strain gauge, piezoresistive, capacitive, piezoelectric, vibration frequency pressure sensors.

Pressure sensors are mainly used in booster cylinders. Pneumatic-hydraulic booster cylinder. Gas-hydraulic booster. Air conditioning and refrigeration equipment and other fields.

Types of pressure sensors

Pressure sensors can be classified according to the pressure range they measure, their operating temperature range or the type of pressure they measure. In terms of pressure type, pressure sensors can be divided into several major categories.

Absolute pressure sensors

Absolute pressure sensors measure pressure relative to an ideal vacuum pressure (0 PS or no pressure). With reference to vacuum, the atmospheric pressure at sea level is 101.325 kPa (14.7PSI).

Gauge Pressure Sensors

Gauge pressure sensors are used in different applications because they can be calibrated to measure pressure relative to a given atmospheric pressure at a given location. A tire pressure gauge is an example of a gauge pressure indication. More about: What is Diaphragm pressure gauge?

Vacuum Pressure Sensors

Vacuum pressure sensors are used to measure pressures that are less than atmospheric pressure at a given location.

Differential Pressure Sensor

A differential pressure sensor or transmitter measures the difference between two or more pressures introduced as inputs to a sensing unit. An example is the measurement of the pressure drop across an oil filter. Differential pressure is also used to measure the flow or level in a pressurized vessel.

Sealed Pressure Sensors

Extended reading: Featured Diaphragm Seal Pressure Transmitters

A sealed pressure transducer is similar to a gauge pressure transducer, except that it has been calibrated by the manufacturer to measure pressure relative to sea level pressure.

More about Industrial Pressure Sensors

Featured Pressure Sensors

Working Principles of Pressure Sensors

Pressure Sensors are devices that convert various pressures into another physical quantity (usually electricity) that can be easily processed and transmitted according to certain rules. pressure sensors generally consist of three parts: a sensitive element, a conversion element and a measurement circuit, sometimes with an additional auxiliary power supply.

Extended Reading: Digital Pressure Sensor-RS485

Let’s look at the technology used in pressure sensors in more detail.

Pressure measurement technologies

Strain gauge pressure sensors are sensors that measure pressure indirectly by measuring the strain of various elastic elements. Depending on the material used to make them, strain gages can be divided into two categories: metal and semiconductor. The operating principle of strain gauge elements is based on the “strain effect” of conductors and semiconductors. This means that the resistance of conductors and semiconductors changes when they are mechanically deformed.

When a metal wire is subjected to an external force, its length and cross-sectional area will change. The resistance value will be changed. If the wire is elongated by an external force, its length increases. When the cross-sectional area is reduced, the resistance value increases.

When the wire is compressed by an external force, the length decreases and the cross-section increases, the resistance value decreases.

The strain on the wire can be obtained by measuring the change in voltage across the resistance.

Extended Reading: Resistive Pressure Transducer

A piezoresistive pressure sensor is a sensor made by using the piezoresistive effect of single-crystal silicon material and integrated circuit technology. The resistivity of single-crystal silicon material changes when it is subjected to a force, and an electrical signal output proportional to the change in force is obtained through the measurement circuit. It is also called diffusion silicon piezoresistive pressure sensor, which is different from the paste type strain gauge that needs to feel the external force indirectly through the elastic sensitive element, but directly through the silicon diaphragm to feel the measured pressure.

Piezoresistive pressure sensors are mainly based on the piezoresistive effect. The piezoresistive effect is used to describe the change in resistance of a material when subjected to mechanical stress. Unlike the piezoelectric effect, the piezoresistive effect only produces a change in impedance and does not produce an electrical charge.

Extended reading: Silicon Pressure Sensor

Capacitive pressure sensor is a pressure sensor that uses capacitance as a sensitive element to convert the measured pressure into a change in capacitance value. This kind of pressure sensor generally uses a round metal film or metal-plated film as an electrode of the capacitor, when the film feels the pressure and deformation, the electric capacity formed between the film and the fixed electrode changes, through the measurement circuit can output a certain relationship with the voltage of the electrical signal. The capacitive pressure sensor belongs to the class of

The capacitive pressure sensor belongs to the pole pitch change type capacitive sensor, which can be divided into a single capacitance pressure sensor and a differential capacitance pressure sensor.

Extended Reading: Smart pressure transmitter working principle

The piezoelectric pressure sensor is mainly based on the piezoelectric effect (Piezoelectric effect), using electrical components and other machinery to convert the pressure to be measured into electricity. Then the relevant measurement work measurement precision instrument. For example, many pressure transmitters and pressure sensors.

Piezoelectric sensors cannot be used in static measurements. The reason for this is that the charge can be saved only when the circuit has an infinite input resistance after an external force is applied. However, this is not the case in practice.

Therefore, piezoelectric sensors can only be used for dynamic measurements. The main piezoelectric materials are amine dihydrogen phosphate, sodium potassium tartrate, and quartz. It is in quartz that the piezoelectric effect is found.

Extended Reading: Electronic Pressure Switch for Air Compressor

Electromagnetic pressure sensors are a variety of sensors that use the electromagnetic principle collectively, mainly including inductive pressure sensors, Hall pressure sensors, eddy current pressure sensors, etc.

Inductive pressure sensors work due to different magnetic materials and magnetic permeability. When pressure is applied to the diaphragm, the size of the air gap changes. The change in air gap affects the change in inductance of the coil. The processing circuit can convert this change in inductance into a corresponding signal output for the purpose of measuring pressure.

This type of pressure sensor can be divided into two types according to the magnetic circuit change: variable reluctance and variable permeability. The advantages of inductive pressure sensors are high sensitivity and large measurement range; the disadvantage is that they cannot be applied to high-frequency dynamic environments.

Extended Reading: MEMS Pressure Sensors

Hall pressure sensors are made based on the Hall effect of certain semiconductor materials.

The Hall effect is the phenomenon that when a solid conductor is placed within a magnetic field and a current is passed through it, the charge carriers within the conductor are deflected to one side by the Lorentz force, which then generates a voltage (Hall voltage). The electric field force induced by the voltage balances the Lorentz force.

The polarity of the Hall voltage confirms that the current inside the conductor is caused by the movement of negatively charged particles (free electrons).

Pressure sensors based on the eddy current effect. The eddy current effect is produced by a moving magnetic field intersecting a metallic conductor or by a moving metallic conductor meeting perpendicular to the magnetic field. In short, it is caused by the electromagnetic induction effect. This action produces a current that circulates in the conductor.

The eddy current characteristic makes eddy current detection have characteristics such as zero frequency response, so eddy current pressure sensors can be used for static force detection.

Vibro pressure sensors are frequency-sensitive sensors, and this frequency measurement has a very high degree of accuracy. Because time and frequency are the physical parameters that can be measured accurately. And the frequency signal in the transmission process can ignore the influence of cable resistance, inductance, capacitance, and other factors.

At the same time, the Vibro-sinusoidal pressure sensor also has strong anti-interference ability, small zero-point drift, good temperature characteristics, simple structure, high resolution, stable performance, easy data transmission, processing, and storage. It is easy to realize the digitalization of the instrument. Therefore, the vibrating-sine type pressure sensor can also be used as one of the directions of sensing technology development.

Extended reading: Best Price Ceramic Pressure Sensor

Extended reading: Pressure indicator transmitters

Pressure sensors, pressure transducers, and pressure transmitters

A pressure sensor is a device or device that can sense a pressure signal and convert the pressure signal into a usable output electrical signal according to a certain rule.
A pressure sensor usually consists of a pressure-sensitive element and a signal processing unit. According to different test pressure types, pressure sensors can be divided into gauge pressure sensors, differential pressure sensors and absolute pressure sensors. A pressure sensor is the core part of pressure transmitter.

In a pressure transducer, a thin-film or piezo-resistive pressure sensor is mounted on a process connection. The transducer converts pressure into an analog electronic output signal, typically as a millivolt per volt output. These signals are not linearized or temperature compensated.

pressure transmitter has additional circuitry that linearizes, compensates, and amplifies the signal from a transducer. The different signal types are typically voltage signals (eg, 0 to 5 or 0 to 10 volts), milliamp (eg, 4 to 20 milliamp), or digital. The instrument can transmit the signal to a remote receiver.

Extended reading: Static pressure vs dynamic pressure vs total pressure

Pressure sensor performance parameters

Pressure sensors mainly have the following parameters.

1.Capacity.

The range refers to the rated load of the pressure sensor. The general unit is KGf, N, etc.. Such as the range of 100KGf, the sensor measurement range is 0-100KGf.

2. Rated output.

Sensitivity is the output signal coefficient of the pressure sensor, the unit is mV / V, common 1mV / V, 2mV / V, the full range of the pressure sensor output = working voltage * sensitivity, for example: working voltage 5VDC, sensitivity 2mV / V, the full range of output that is 5V * 2mV / V = 10mV, such as pressure sensors full range of 100KG, pressure full 100KG, the output that is 10mV, pressure 50KG that is 5mV.

3. Non-linearity.

Non-linearity is the percentage of the maximum deviation between the output value of the empty load and the output value of the rated load determined by the straight line and the actual measured curve of the increased load for the rated output value. In theory, the output of the sensor should be linear, but in fact it is not. Non-linearity is the percentage deviation from the ideal. Non-linear units: %FS, non-linear error = range * non-linearity, such as the range of 100KG, non-linearity of 0.05% FS, non-linear error that is: 100KG * 0.05% = 0.05KG.

4. Repeat ability.

Repeatability error refers to the repeated loading of the sensor to the rated load and unloading under the same environmental conditions. The maximum difference of the output value on the same load point during the loading process on the percentage of rated output.

5.Creep.

Creep refers to the load remains unchanged, other test conditions also remain unchanged, the pressure sensor output change over time on the percentage of rated output, generally taken 30min.

6.Hysteresis.

Hysteresis refers to the pressure sensor from no load gradually loaded to the rated load and then gradually unloaded. In the same load point on the maximum difference between the loaded and unloaded output on the rated output value of the percentage.

7. Zero balance.

Under the recommended voltage excitation, the output value of the pressure sensor at no load is a percentage of the rated output. Theoretically, the output of the pressure sensor at no load should be zero, in fact, the output of the pressure sensor at no load is not zero, which there is a deviation, zero output is the percentage of deviation.

8.Input resistance.

Input resistance is the signal output open circuit, the sensor is not pressurized, from the pressure sensor input (Cang positive pressure sensor for the red and black line) measured impedance value.

9.Output resistance.

Output resistance is a short circuit at the input of the pressure sensor, the sensor is not pressurized, the impedance measured from the signal output (Cangzhou pressure sensor for the green and white lines).

10.Insulation impedance.

Insulation impedance is the DC impedance value between the circuit of the pressure sensor and the elastomer.

11.Operation Temp range.

Operating temperature range refers to the pressure sensor in the temperature range of its performance parameters will not produce permanent harmful changes.

12. Compensated temp range.

Temperature compensation range refers to the temperature range, the rated output of the sensor and zero balance are closely compensated, so as not to exceed the specified range.

13. Temperature effect on zero.

Temperature effect on zero refers to the effect of changes in ambient temperature on the zero point of the pressure sensor. Generally used for every 10 ℃ change in temperature, the amount of change in zero balance caused by the percentage of the rated output to express, the unit: % F.S./10 ℃.

14. Temperature effect on out.

Sensitivity temperature drift is the change in the sensitivity of the pressure sensor caused by changes in ambient temperature. Generally expressed as a percentage of the rated output for each 10 ℃ change in temperature caused by the change in sensitivity, the unit is: F.S./10 ℃.

15. Safe Load Limit.

Safe overload means that the load will not cause destructive damage to the pressure sensor, but can not be overloaded for a long time.

16. Ultimate overload.

Ultimate overload is the limit value of the pressure sensor load.

17. Excitation voltage Excitation recommend.

Excitation voltage refers to the working voltage of the pressure sensor, generally 5-12VDC.

Extended Reading: Up to 800°C High Temperature Pressure Sensor

Applications of Pressure Sensors

Pressure sensor is one of the most commonly used sensors in industrial practice. It is widely used in various industrial self-control environments. It involves water conservancy and hydropower, railroad transportation, intelligent building, production automation, aerospace, military, petrochemical, oil well, electric power, ship, machine tool, pipeline and many other industries.

The following is a brief introduction to some application examples of pressure sensors.

  1. Application to hydraulic system

Pressure sensor in the hydraulic system is mainly to complete the closed-loop control of the force. When the control valve spool moves suddenly, a spike pressure of several times the working pressure of the system will be formed in a very short period of time.

  1. Pressure sensors in the application of water treatment

China’s environmental protection water treatment industry, in recent years, has been rapid development, and the future prospects are promising. Water and wastewater treatment processes rely on the use of pressure sensors to provide an important means of control and monitoring for system protection and quality assurance.

  1. Application in injection molding

Pressure sensors have an important role in injection molds. Pressure sensors can be installed in the nozzles of injection molding machines, hot runner systems, cold runner systems and mold cavities to measure the plastic pressure somewhere between the nozzle of the injection molding machine and the mold cavity during the injection, filling, holding and cooling processes.

  1. Applications in compressors, air conditioning and cooling equipment

Pressure sensors are commonly used in air compressors and air conditioning and refrigeration equipment. These sensors are compact and easy to install, and the pressure guide port is usually designed with a special valve needle.

  1. Used in monitoring mine pressure

Sensor technology as one of the key technologies for mine pressure monitoring.

On the one hand, we should properly apply the existing variety of sensors to serve the mining industry;

On the other hand, sensor manufacturers develop and develop new pressure sensors to adapt to more mining industry applications.

Note that the pressure transmitter needs to be calibrated after a period of use. In order to ensure the accuracy of the quantity.

FAQ

A proximity sensor is a device that has the ability to sense the proximity of an object… It uses the sensitivity of the displacement sensor to the approaching object to identify the proximity of the object. And output the corresponding switch signal. Therefore, the proximity sensor is often referred to as a proximity switch.

It is a general term for a sensor that replaces a contact detection method such as a switch for the purpose of detecting an object without touching it. It detects the movement and presence of the object and converts it into an electrical signal.

Proximity sensor, also known as contactless proximity sensor, is the ideal electronic sensor quantity proximity sensor.

When the metal detection body close to the sensor sensing area. The sensor can be no contact, no pressure, no spark, rapid electrical command. Accurate response to the position and travel of the motion mechanism. Even for general travel control, the positioning accuracy, operating frequency, service life, ease of installation and adjustment, and the ability to adapt to harsh environments are incomparable to those of general mechanical travel sensors. It is widely used in machine tool, metallurgy, chemical, light textile and printing industries.

Translated with www.DeepL.com/Translator (free version)

A differential pressure sensor is a sensor used to measure the difference between two pressures, usually at the front and rear ends of a piece of equipment or component.

Extended reading: Differential Pressure Transmitter Installation Guide

Oil pressure sensor is a device that converts pressure signals into electrical signals through the piezoresistive effect.

Oil pressure sensor is one of the most commonly used sensors in industry. It is widely used in various industrial automatic control environments, involving water conservancy and hydropower, engineering machinery, aerospace, transportation, petrochemical, machine tools, pipelines and many other industries.

Extended reading: High Pressure Hydraulic Flow Meter

As an important part of hydraulic equipment, the pressure sensor is used for pressure measurement and control. It can accurately measure the pressure to be measured and transmit the test results to the subsequent display or control in a timely manner.

Extended reading: Miniature Pressure Switch

Related Blogs

Steam Pressure Transmitter

Steam pressure transmitters are widely used in the measurement and control of various high-temperature steam piping…

Cryogenic Pressure Transducers

Cryogenic pressure transducer for low temperature pressure measurement.  -196℃~+125℃、-260℃/-350c(especial). Sino-Inst offers a variety of Pressure Sensors…

What is a pressure sensor? and other questions about pressure sensors. We hope that after reading this article, you will have a clear understanding.

Sino-Inst offers over 20 Pressure sensors. A wide variety of Pressure sensors options are available to you. Such as free samples, paid samples.

Sino-Inst is a globally recognized manufacturer of Pressure sensors, located in China. Sino-Inst sells through a mature distribution network that reaches all 30 countries worldwide. Pressure sensors products are most popular in Europe, Southeast Asia, and Mid East. You can ensure product safety by selecting from certified suppliers. With ISO9001, ISO14001 certification.

Static Pressure vs Dynamic Pressure vs Total Pressure

You may have heard of Static Pressure, Dynamic Pressure and Total Pressure. Especially in some industrial process pipe parameters. So what are Static Pressure, Dynamic Pressure and Total Pressure? What is the difference between them? How are they measured? Let’s take a look together.

Static pressure vs dynamic pressure vs total pressure

According to the knowledge of fluid mechanics. The vertical force acting on the unit area of the fluid is called pressure. When the air flows along the inner wall of the duct, its pressure can be divided into static pressure, dynamic pressure and full pressure. The unit is mmHg or kg/㎡ or Pa, respectively.

Static pressure (Pi).

What is static pressure?

Static pressure is the pressure generated by the air molecules hitting the duct wall due to irregular movement.
When calculating, the static pressure with absolute vacuum as the calculation zero points are called absolute static pressure.
The static pressure with atmospheric pressure as the zero point is called relative static pressure.
The static pressure of air in air conditioning refers to the relative static pressure.
The static pressure is positive when it is higher than atmospheric pressure, and negative when it is lower than atmospheric pressure.

Dynamic pressure (Pb).

What is dynamic pressure?

Dynamic pressure refers to the pressure generated by the flow of air, as long as the air flow in the duct has a certain dynamic pressure, and is positive. Dynamic pressure = 0.5 * air density * wind speed 2 .

Total pressure (Pq).

What is total pressure?

The total pressure is the algebraic sum of the static and dynamic pressures: Pq=Pi+Pb .

The total pressure represents the total energy of 1m3 of gas. If the atmospheric pressure is the starting point of the calculation, it can be positive or negative.

Extended reading: Pressure indicator transmitters

Extended reading: Pressure Sensor Applications-Featured Industry Applications

The difference between static pressure, dynamic pressure and total pressure

Different nature

  1. Total pressure: The pressure measured parallel to the wind flow, directly opposite to the direction of the wind flow.
  2. Static pressure: the pressure on the surface of an object at rest or in uniform linear motion.
  3. Dynamic pressure: When the object is moving in the fluid, the surface in the direction of the fluid movement. The fluid is completely blocked, where the fluid velocity is 0. Its kinetic energy is transformed into pressure energy, and the pressure increases.

Extended reading: wireless pressure transmitter

Features are different

1.Total pressure: air conditioning units or fresh air units are often installed at the end of the fan, the fan outlet wind speed is high, high dynamic pressure, static pressure is small. Engineering often installed at the exit of the anechoic static pressure box, reduce the dynamic pressure, increase the static pressure. At the same time, the same flow, muffling effect.

2.Static pressure: with no noise, no vibration, no impact.

3.Dynamic pressure: only the directional flow of air to show dynamic pressure. Dynamic pressure is directional, only the plane perpendicular or oblique to the direction of wind flow pressure. The plane of the vertical flow direction to bear the maximum dynamic pressure, the plane of the parallel flow direction to bear the dynamic pressure is zero. In the same flow section, because the wind speed at each point is not equal, the dynamic pressure varies. Dynamic pressure is not absolute pressure and relative pressure, always greater than zero.

Extended reading: extrusion melt pressure transducer

Different applications

  • Total pressure: applied to air conditioning or fan products.
  • Static pressure: applied to fluid dynamics.
  • Dynamic pressure: applied to mines, aerospace, etc.

Extended Reading: Up to 800°C High Temperature Pressure Sensor

What is an example of static and dynamic pressure?

Example of static pressure: When water is stored in a closed container, the pressure generated by the water in the container is static pressure. For example, water stored in a water tower develops pressure due to its height.

Example of dynamic pressure: When water flows in a pipe, in addition to the static pressure due to the weight of the water, there is also pressure due to the flow speed of the water. This part of the pressure is dynamic pressure. For example, the pressure created when water from a faucet hits the bottom of a wash basin.

Dynamic Pressure Calculator

Dynamic pressure is the kinetic energy of a flowing fluid – liquid or gas – per unit volume – and can be expressed as

pd = 1/2 ρ v²

Where:
pd = dynamic pressure (N/m2 (Pa), lbf/ft2 (psf))
ρ = density of fluid (kg/m3, slugs/ft3)
v = velocity (m/s, ft/s)

Online Dynamic Pressure Calculator

What is a dynamic pressure sensor?

The piezoelectric effect is the main operating principle of dynamic pressure sensors. Dynamic pressure sensors cannot be used for static measurements.

This is because the charge after an external force is only saved when the circuit has an infinite input impedance.

This is not the case in practice, so this determines that dynamic pressure sensors can only measure dynamic stresses.

Extended Reading: Electronic Pressure Switch for Air Compressor

Featured Static Pressure & Dynamic Pressure Sensors

Extended reading: Measuring Flow With Pressure Sensors

Static pressure sensor and dynamic pressure sensor difference

  1. Diaphragm pressure sensor is according to the structure of the sensor, according to the sensing principle diaphragm pressure sensor can be divided into different types such as piezoresistive, strain gauge, inductive, capacitive, piezoelectric, etc.
  2. Among the above different principles of pressure sensors, piezoelectric pressure sensors are only suitable for measuring dynamic pressure. Therefore, dynamic calibration is required; other dynamic and static pressures can be measured. The most applications belong to the quasi-static measurement of very low frequency. Therefore, static calibration is the most used form of calibration. When the measured pressure band is wide, all kinds of pressure sensors should do frequency response calibration.

Extended reading: Silicon Pressure Sensor

Applications of dynamic pressure sensors

Dynamic pressure sensors are mainly used in the measurement of acceleration, pressure and force.

Dynamic pressure sensors are also widely used in biomedical measurements. For example, ventricular catheter microphones are made of piezoelectric sensors. Because dynamic pressure measurements are so common. This is why dynamic pressure sensors are so widely used.

Dynamic pressure transducers are used in a wide range of applications, typically to measure speed, pressure, and force. Therefore, they have a very high value in some products.

Extended reading: Best Price Ceramic Pressure Sensor

Frequently
Asked
Questions

The static pressure sensor is based on atmospheric pressure or absolute vacuum, and compares the difference between the measured pressure and atmospheric pressure or absolute vacuum.

A static pressure sensor can be thought of as a specific form of differential pressure sensor. However, due to the measurement requirements, there will be large differences in the structure of the two.

In ventilation systems, static pressure is the pressure exerted by the air inside a building relative to the outside air pressure when the exhaust fan is turned on. Measuring and maintaining proper negative pressure allows ventilation systems to mix outside and inside air more efficiently.

Extended reading: Industrial Pressure Transmitters|Buy from the manufacturer

Dynamic pressure, when an object moves in a fluid, on the surface facing the direction of fluid motion, the fluid is completely blocked. The fluid velocity here is 0. Its kinetic energy is converted into pressure energy. The pressure increases. Its pressure is called total resistance pressure . Abbreviated as total pressure or total pressure, represented by P. The difference between it and the pressure at the undisturbed place (ie static pressure, represented by P static) is called dynamic pressure (represented by P dynamic)

Extended reading: Featured Diaphragm Seal Pressure Transmitters

The duct static pressure sensor is a detection instrument that mainly detects the difference of wind pressure on both sides of the filter. Real-time data monitoring and measurement of gas positive pressure, negative pressure and differential pressure can be realized through the wind pressure sensor. Equipped with a pitot tube pressure device, it can realize the three-in-one detection of wind pressure, wind speed and air volume.

Extended reading: how to calibrate a pressure transmitter

Diaphragm pressure sensors are based on the structure of the sensor. According to the sensing principle, diaphragm pressure sensors can be divided into different types such as piezoresistive, strain gauge, inductive, capacitive, and piezoelectric.

Among the above-mentioned pressure sensors with different principles, piezoelectric pressure sensors are only suitable for measuring dynamic pressure. Therefore, dynamic calibration is required;

Other dynamic and static pressures can be measured, and the most widely used is the quasi-static measurement with a very low frequency. Therefore, static calibration is the most widely used calibration form. When the measured pressure frequency band is wide, all kinds of pressure sensors should be calibrated for frequency response.

Extended reading: What is flush diaphragm?

Related Blogs

Steam Pressure Transmitter

Steam pressure transmitters are widely used in the measurement and control of various high-temperature steam piping systems. The monitoring of…

Cryogenic Pressure Transducers

Cryogenic pressure transducer for low temperature pressure measurement.  -196℃~+125℃、-260℃/-350c(especial). Sino-Inst offers a variety of Pressure Sensors for pressure measure and…

Sino-Inst offers over 20 Pressure Transducers.

About 50% of these are 4-20ma Low-Pressure Transducers, 40% are Differential Pressure Gauge, and 20% are Diaphragm Seal Pressure transmitters, 20% are 4-20ma differential pressure transmitters.

A wide variety of  Pressure Transducers options are available to you, such as free samples, paid samples. 

Sino-Instrument is a globally recognized supplier and manufacturer of Pressure Transducers, located in China.

The top supplying country is China (Mainland), which supply 100% of Pressure Transducers respectively.

Sino-Inst sells through a mature distribution network that reaches all 50 states and 30 countries worldwide.

Pressure Transducers products are most popular in Domestic Market, Southeast Asia, and Mid East. 

You can ensure product safety by selecting from certified suppliers, with ISO9001, ISO14001 certification.

Request a Quote

Please enable JavaScript in your browser to submit the form

Introduction to Piezoelectric Pressure Sensors

What is a piezoelectric pressure sensor?

The piezoelectric pressure sensor is a sensor that uses the piezoelectric effect of piezoelectric materials to convert the measured pressure into an electrical signal. Use electrical components and other machinery to convert the pressure to be measured into electricity. Measuring precision instrument for related measurement work. Such as pressure transmitters and pressure sensors.

Piezoelectric pressure sensor working principle

Piezoelectric pressure sensors are mainly based on the piezoelectric effect (Piezoelectric effect). Use electrical components and other machinery to convert the pressure to be measured into electricity. Then perform measurement precision instruments such as pressure transmitters and pressure sensors.

Piezoelectric sensors can not be used in static measurement. The reason is the electric charge after the action of external force. When the circuit has infinite input resistance, it can be preserved.

But this is not the case.

Therefore, piezoelectric sensors can only be used in dynamic measurements.

Its main piezoelectric materials are: dihydrogen phosphate, sodium potassium tartrate and quartz. The piezoelectric effect is found on quartz.

When the stress changes, the electric field changes very little, and some other piezoelectric crystals will replace quartz.

Potassium sodium tartrate, it has a large piezoelectric coefficient and piezoelectric sensitivity. However, it can only be used indoors where the humidity and temperature are relatively low.

Dihydrogen phosphate is a kind of artificial crystal. It can be used in high humidity and high temperature environment. Therefore, its application is very wide.

With the development of technology, the piezoelectric effect has also been applied to polycrystals. For example: piezoelectric ceramics, niobate magnesium acid piezoelectric ceramics, niobate series piezoelectric ceramics and barium titanate piezoelectric ceramics, etc. are included.

The sensors based on the piezoelectric effect are electromechanical conversion and self-generation sensors. Its sensitive components are made of piezoelectric materials.

When the piezoelectric material is subjected to an external force, an electric charge will be formed on its surface. The electric charge will be amplified by the charge amplifier, the measuring circuit and the impedance converted. It will be converted into an electrical output proportional to the external force received.

It is used to measure force and non-electrical physical quantities that can be converted into force. For example: acceleration and pressure.

It has many advantages: lighter weight, reliable work, simple structure, high signal-to-noise ratio, high sensitivity and signal bandwidth, etc.

But it also has some shortcomings: some voltage materials are protected from moisture. Therefore, a series of moisture-proof measures need to be taken. And the output current response is relatively poor. Then it is necessary to use a charge amplifier or a high input impedance circuit to make up for this shortcoming. Make the instrument work better.

Extended reading: Silicon Pressure Sensor

Related Products:

Piezoelectric pressure sensor advantages and disadvantages

  1. The advantages are bandwidth, high sensitivity, high signal-to-noise ratio, simple structure, reliable work, and lightweight.
  2. The disadvantage is that some piezoelectric materials need moisture-proof measures. And the output DC response is poor. It is necessary to use a high input impedance circuit or a charge amplifier to overcome this defect.

Extended Reading: Digital Pressure Sensor-RS485

The working principle of 5 common pressure sensors

In addition to the Piezoelectric Pressure Sensors described in this article, there are many pressure transmitters and pressure sensors that can convert pressure into electrical signals.

So how do these pressure transmitters and pressure sensors convert pressure signals into electrical signals? What are the characteristics of different conversion methods?

Here, I have summarized the measurement principles of several common pressure sensors for everyone. hope that it can help us.

Piezoresistive pressure sensors are mainly based on the piezoresistive effect (Piezoresistive effect). The piezoresistive effect is used to describe the resistance change of a material under mechanical stress.

Unlike the piezoelectric effect described above, the piezoresistive effect only produces impedance changes, and does not generate electric charges.

Most metal materials and semiconductor materials have been found to have a piezoresistive effect. Among them, the piezoresistive effect in semiconductor materials is much greater than that in metals.

Extended reading: wireless pressure transmitter working principle

Because silicon is the mainstay of today’s integrated circuits. The application of piezoresistive elements made of silicon becomes very meaningful.

Piezoresistive pressure sensors are generally connected to Wheatstone bridges through lead wires.

Normally, the sensitive core has no applied pressure, and the bridge is in a balanced state (called zero position). When the sensor is pressed, the chip resistance changes, and the bridge will lose balance.

If a constant current or voltage power supply is added to the bridge. The bridge will output a voltage signal corresponding to the pressure. In this way, the resistance change of the sensor is converted into a pressure signal output by the electric bridge.

The bridge detects the change in resistance value, and after amplification, it undergoes voltage and current conversion. Converted into the corresponding current signal. The current signal is compensated by the nonlinear correction loop. That is, a standard output signal of 4-20mA with a linear corresponding relationship between the input voltage is produced.

In order to reduce the influence of temperature changes on the resistance of the core, and improve the measurement accuracy. The pressure sensor adopts temperature compensation measures to maintain a high level of technical indicators such as zero drift, sensitivity, linearity, and stability.

Extended Reading: Electronic Pressure Switch for Air Compressor

The capacitive pressure sensor is a pressure sensor that uses capacitance as a sensitive element to convert the measured pressure into a change in capacitance value.

This kind of pressure sensor generally uses a circular metal film or a metal-plated film as an electrode of the capacitor. When the film deforms under pressure, the capacitance formed between the film and the fixed electrode changes.

The electrical signal that has a certain relationship with the voltage can be output through the measuring circuit.

The capacitive pressure sensor is a capacitive sensor with a variable pole pitch. It can be divided into a single capacitive pressure sensor and a differential capacitive pressure sensor.

Read more about Capacitive pressure transducer.

A variety of sensors that use electromagnetic principles are collectively referred to. They mainly include inductive pressure sensors, Hall pressure sensors, and eddy current pressure sensors.

Extended reading: how to calibrate a pressure transmitter

The working principle of inductive pressure sensors is due to the different magnetic materials and permeability.

When the pressure acts on the diaphragm, the size of the air gap changes, and the change of the air gap affects the change of the inductance of the coil. The processing circuit can convert the change of this inductance into the corresponding signal output. So as to achieve the purpose of measuring pressure.

This kind of pressure sensor can be divided into two types according to the change of the magnetic circuit: variable magnetic resistance and variable magnetic permeability. The advantages of inductive pressure sensors are high sensitivity and large measuring range. The disadvantage is that they cannot be used in high-frequency dynamic environments.

Hall pressure sensors are made based on the Hall effect of certain semiconductor materials.

The Hall effect refers to when a solid conductor is placed in a magnetic field and a current flows through it.

The charge carriers in the conductor are biased to one side by the Lorentz force. Then a voltage (Hall voltage) is generated. The electric field force caused by the voltage will balance the Lorentz force.

Through the polarity of the Hall voltage, it can be confirmed that the current inside the conductor is caused by the movement of negatively charged particles (free electrons).

Eddy current pressure sensor is a pressure sensor based on the eddy current effect.

The eddy current effect is caused by the intersection of a moving magnetic field and a metal conductor, or the intersection of a moving metal conductor and the magnetic field perpendicularly.

In short, it is caused by electromagnetic induction effects. This action creates a current circulating in the conductor.

Extended reading: What is a pressure sensor?

Vibrating wire pressure sensor is a frequency sensitive sensor.

This kind of frequency measurement has the desired high accuracy. Because time and frequency are physical parameters that can be accurately measured. And the frequency signal can ignore the influence of cable resistance, inductance, capacitance and other factors during the transmission process.

At the same time, the vibrating wire pressure sensor also has strong anti-interference ability, small zero drift, good temperature characteristics, simple structure, high resolution, stable performance. It is convenient for data transmission, processing and storage. It is easy to realize the digitalization of the instrument.

Therefore, vibrating wire pressure sensors can also be used as one of the development directions of sensing technology.

Extended reading: Best Price Ceramic Pressure Sensor

What Is Flush Diaphragm Pressure Sensor?

You may like:

Steam Pressure Transmitter

Steam pressure transmitters are widely used in the measurement and control of various high-temperature steam piping…

Cryogenic Pressure Transducers

Cryogenic pressure transducer for low temperature pressure measurement.  -196℃~+125℃、-260℃/-350c(especial). Sino-Inst offers a variety of Pressure Sensors…

MEMS Pressure Sensors

MEMS pressure sensors are pressure sensors manufactured using MEMS technology. MEMS pressure sensors include silicon piezoresistive…

Extended Reading: Up to 800°C High Temperature Pressure Sensor

Sino-Instrument is a globally recognized supplier and manufacturer of
Pressure Transducers, located in China.

The top supplying country is China (Mainland), which supply 100% of Pressure Transducers respectively.

Sino-Instrument sells through a mature distribution network that reaches all 50 states and 30 countries worldwide.

Pressure Transducers products are most popular in Domestic Market, Southeast Asia, and Mid East. 

You can ensure product safety by selecting from certified suppliers, with ISO9001, ISO14001 certification.

What Is an Air Pressure Transducer?

An Air pressure transducer is a sensor that converts the mechanical signal of air pressure into a current signal. Pressure has a linear relationship with voltage or current, and it is generally proportional. Therefore, the output voltage or current of the transmitter increases as the pressure increases. From this, a relationship between pressure and voltage or current is derived.

Featured air pressure transducers

SI-300 Pressure Transducer 4-20mA/Voltage
The 4-20mA/ Voltage Pressure Transducer,
also called pressure transmitter 4-20mA,
is a pressure sensor with4-20ma/Voltage output.
SI-390 Industrial Pressure Transmitter
Pressure transmitters for general industrial applicaitons. -0.1kPa ~ 0 ~ 0.01kPa ~ 100MPa ~150MPa. 0.1% FS, 0.25% FS, 0.5% FS. 4-20mA (2-wire system), 0-5 / 1-5 / 0-10V (3-wire
SI-503K Gas Pressure Sensor
Gas pressure sensor for industrial gas pressure monitoring. Pagoda gas nozzle Φ8. Such sensors are also commonly referred to as wind pressure transmitters, exhaust pressure sensors.
SI-702 High Pressure Sensor
High pressure sensor is pressure transmitter designed for high pressure measure&control. 0 ~ 40MPa… 600MPa. M20 × 1.5, G1 / 2 (others are customized according to requirements)
SI-702S Ultra-High Pressure Senors
Pressure sensor for Ultra high pressure applications. Ultra high pressures up to 15,00MPa. 0-2000MPa to 0-7000MPa (customized).Ball head M20 × 1.5, cone head M20 × 1.5.
SI-512H High Temperature Pressure Sensor
High Temperature Pressure Sensor for pressure measurement of high temperature gas or liquid. Such as steam pressure. High temperature up to 800 ℃.
SIJC-1000HSM-Silicon Pressure Sensor
Silicon pressure sensor, also known as Diffused silicon pressure sensor. Silicon pressure sensors are low cost.
SI-706 Combined Pressure and Temperature Sensor-Dual function
Combined pressure and temperature sensor for Simultaneous measurement of pressure and temperature.
Thermocouple types: J, K, E type or PT100 platinum resistance. Two outputs do not affect each other. 
Absolute Pressure Transmitter
Absolute pressure transmitter with 4-20mA output for measuring pressure with absolute type reference. Absolute pressure (AP) transmitter is a measure of the ideal (complete) vacuum pressure.
Hydrostatic pressure transmitter
Hydrostatic pressure transmitter is used for fluid hydrostatic pressure measurement. With working static pressure up to 32Mpa, for liquid, gas or steam .

Pressure transducer is a high-precision instrument that can perform on-site inspection of pressure parameters, and is widely used in industrial measurement and control processes. It can be used to measure the pressure, differential pressure and absolute pressure of various media such as liquid, gas and steam. Then the pressure signal is converted into 4-20mADC signal output to supply secondary instruments such as indicating alarm, recorder, regulator, etc. for measurement, indication and process adjustment.

Extended reading: extrusion melt pressure transducer

The functional principle of a resistive pressure transmitter is very simple. The pressure sensor converts the mechanical pressure value into a proportional electrical signal. The pressure sensor typically consists of a stable main body and a (thin) diaphragm.

The diaphragm is the most important element for the measurement of pressure and is equipped with strain-sensitive and compression-sensitive resistance structures, so-called strain gauges (DMS). The diaphragm is deflected under the influence of pressure. 

Thus, the strain gauges attached to it are elongated or compressed and its electrical resistance changes. This change in resistance is directly proportional to the pressure.  For example, if the resistors are wired to a Wheatstone measuring bridge, the resulting electrical signal can be measured and transferred to an indicator.

Extended reading: Pressure indicator transmitters

Read more about: What is a pressure sensor and how it works? 

There are different types of pressure transducers based on their design.

These sensors can come in several shapes and sizes, but the technology inside can also differ. 

There 4 main types of pressure sensors based on this: 

  • Strain Gauge Pressure Transducers
  • Capacitance Pressure Transducers
  • Potentiometric Pressure Transducers
  • Resonant Wire Pressure Transducers

More about Industrial Pressure Sensors

Extended Reading: Electronic Pressure Switch for Air Compressor

The terms pressure sensor, pressure transducer and pressure transmitter are often used interchangeably. We usually define relevant measurement parameters and output signals to distinguish products.

Of course, if you want to strictly distinguish these three words from a technical point of view, you can refer to the following brief introduction:

PRESSURE SENSOR

Millivolt (mV) output signal (also a general term for all pressure types); a device that measures pressure.

The millivolt output signal can typically be used ten (10) to (20) feet away from the electronics without significant signal loss. The signal is proportional to the supply. A 5VDC supply with a 10mV/V output signal produces a 0-50mV output signal.

Older technologies such as bonded foil strain gage or thin film technology produce 2-3mV/V (millivolts per volt), whereas MEMS technology can produce 20mV/V reliably.

Millivolt output signals give the design engineer the flexibility to condition the output signal as their system needs it and can reduce package size and cost.

Extended Reading: 4-20ma pressure transducer wiring diagram

PRESSURE TRANSDUCER

High level voltage or frequency output signal including 0.5 to 4.5V ratiometric (output signal is proportional to the supply), 1-5V and 1-6kHz. These output signals should be used within twenty (20) feet of the electronics.

Voltage output signals can offer low current consumption for remote battery operated equipment such as wellhead SCADA systems.

Supply voltages are typically from 8-28VDC, except for the 0.5-4.5V output, which requires a 5VDC regulated supply.

Older voltage output signals, such as 0-5V, do not have a “live zero” where there is signal when the sensor is at zero pressure. The risk is that the system does not know the difference between a failed sensor with no output and zero pressure.

Extended Reading: Smart pressure transmitter

PRESSURE TRANSMITTER

Current output signal, i.e. 4-20mA (4 to 20mA), the current, rather than the voltage, is measured on the device, rather than the voltage; Sino-Inst pressure transmitters are two wire devices (red for supply, black for the ground).

4-20mA pressure transmitters offer good electrical noise immunity (EMI/RFI), and will need a power supply of 8-28VDC. Because the signal is producing current, it can consume more battery life if operating at full pressure.

Extended reading: Pressure Sensor Applications In Various Industries

Pressure Transducer is a device or device that can sense the pressure signal and convert the pressure signal into a usable output electrical signal according to a certain law. Pressure sensors are usually composed of pressure sensitive elements and signal processing units. According to different test pressure types, pressure sensors can be divided into gauge pressure sensors, differential pressure sensors and absolute pressure sensors.

Pressure sensor is the most commonly used sensor in industrial practice. It is widely used in various industrial automation environments, involving water conservancy and hydropower, railway transportation, intelligent buildings, production automation, aerospace, military, petrochemical, oil wells, electric power, ships, machine tools , pipeline and many other industries, the following briefly introduces some common sensor principles and their applications. Another medical pressure sensor.

Our pressure transmitters can also be upgraded to Low power-battery powered Wireless Pressure Sensors.

The pressure switch adopts high-precision, high-stability pressure sensor and transmission circuit, and then uses the CPU modular signal processing technology to realize the detection, display, alarm and control signal output of the medium pressure signal.

Pressure switches can be widely used in petroleum, chemical, metallurgy, electric power, water supply and other fields to measure and control the gauge pressure and absolute pressure of various gases and liquids. It is an ideal intelligent measurement and control instrument for industrial sites. Pressure switches are widely used in aerospace and military fields, such as M1A1 tanks, Apollo spacecraft, Boeing 747, Airbus A320, F22, F117 and other product manufacturing.

A pressure switch is not the same as a pressure sensor:

(1) The pressure sensor is composed of a pressure-sensitive element and a conversion circuit. It uses the pressure of the measured medium to impregnate the pressure-sensitive element to produce a small changing current or voltage output.
(2) The pressure switch is a utility switch that automatically turns on or off when the set value is reached.

Extended Reading: strain gauge pressure transducer

What is the difference between a pressure switch and a pressure sensor

  1. Difference in function

(1) As the name suggests, the pressure switch is a switch. It is just that the pressure is set in advance. When the measured medium reaches this pressure, the switch can be turned on or off automatically. The pressure switch must be given a pressure value in advance, and then open or close the switch. It is used for simple control, and it is all switching output.

(2) The pressure sensor can not only output analog signals, but also output digital signals. Digital signal processing is more convenient, and it can also be transmitted remotely. The pressure sensor is composed of a pressure-sensitive element and a conversion circuit. The pressure of the measured medium acts on the pressure-sensitive element to generate a small change of current or voltage output.

  1. Price difference

The pressure sensor is naturally much more expensive than the pressure switch. Because the pressure sensor has an internal signal conditioning circuit. Considering the service life and safety, the pressure sensor is much more cost-effective than the pressure switch. The after-sales service, product reputation, The market difference is better than the pressure switch. Obviously, the pressure sensor is still the priority.

  1. Differences in the mode of action

(1) The sensor often needs to be used in conjunction with an external amplifier circuit to complete the process from pressure detection to control and display. Since the pressure sensor is a primary component, the signal fed back by the pressure sensor needs to be processed, analyzed, stored, and controlled through the measurement and control system, so that industrial automation equipment and project operation control are more intelligent.

(2) The pressure switch does not need other cooperation. When the pressure is sensed, it can complete the work independently.

Extended reading: How to calibrate HART pressure transmitters

Air pressure transducer selection:

  1. Measuring range (range)
  2. The output signal, communication protocol, whether with display meter
  3. Process interface (general, please provide thread specifications, flange type, provide specific flange standard, flange size, capillary length, process medium temperature, and other information)
  4. Electrical interface
  5. Installation method (horizontal installation or vertical installation)
  6. Mounting bracket (flat bracket or L-shaped bracket, bracket material requirement: carbon steel or stainless steel)
  7. Other requirements (explosion-proof, explosion-proof, lightning arrester, water, and oil prohibition treatment, etc.)

Read more about Gas Pressure Transducer-Sensor for Gas Pressure Measurement 

Tools for converting and calculating pressure values

Absolute pressure-Gauge pressure ConverterPressure Unit ConverterLiquid Depth/Level to Hydrostatic Pressure Calculator
Differential Pressure CalculatorPressure Transducer 4-20ma Output CalculatorPressure to Liquid Level Calculator

More Pressure Measurement Products

Frequently
Asked
Questions

Here we briefly introduce the use of some pressure transmitters;

  1. It is directly used for the measurement of various pressures: air pressure, water pressure, hydraulic pressure (including water pressure), various blood pressure measurement of people in life, etc.;
  2. Pressure sensors are used in automobiles, some high-end motorcycles and almost all internal combustion engines;
  3. Liquid level meter: Most of the field meters used for various liquid level measurement are also pressure sensors;
  4. The source of the weighing signal of most electronic weighing scales and truck scales is also the pressure sensor.
  5. Pressure sensors are also used for acceleration measurement in aviation and aerospace.

There are many others, too many to list.

There are two measurement methods:

  1. Pass the current test of the multimeter, the steps are as follows:
  • The red test lead of the multimeter is connected to the hole of mA, and the black test lead is connected to COM.​​
  • Adjust the gear of the multimeter to the DC mA gear.
  • The red test lead of the multimeter is connected to the positive pole of the 4-20mA sensor output, and the black test lead is connected to the negative pole of the 4-20mA sensor output.
  • Read the reading from the display area of ​​the multimeter, and the reading is the current value.
  1. Through the multimeter’s 10,000-voltage range measurement, for the multimeter without the current test function, the current value can be measured by the voltage, and the steps are as follows:
  • At the output of the 4-20mA sensor, connect a sampling resistor of about 100 ohms.
  • The red test lead of the multimeter is connected to the hole of mA, and the black test lead is connected to COM.​​
  • Adjust the gear of the multimeter to DC V gear.
  • The red test lead of the multimeter is connected to the positive pole of the 4-20mA sensor output, and the black test lead is connected to the negative pole of the 4-20mA sensor output.
  • Read the reading from the display area of ​​the multimeter, the reading is the voltage value, and the current value can be obtained by dividing the reading reading by the resistance value (such as 100 ohms).

Use the DC current function of the multimeter, 20mA gear (if not, choose 100mA gear), and you can directly test the sensor output. If it is a desktop digital multimeter, you can also use any sensor function to allow the instrument to directly test the physical quantity sensed by your sensor. Wiring method: red test lead to green wire, black test lead to yellow wire

The basic principle of the differential pressure transmitter is to divide a space with a sensitive element (multi-purpose bellows) into two chambers. When pressure is introduced into the two chambers, respectively, the sensor produces displacement (or a tendency to displace) under the combined action of the two pressures. This displacement is proportional to the pressure difference (differential pressure) between the two chambers. Convert this displacement into a standard signal output that can reflect the magnitude of the differential pressure.

Read more about: What Is A Differential Pressure Transmitter?

  1. Potentiometer-based calibration
    Some pressure sensors have screws for zero adjustment, span adjustment, or both. Turning these screws will adjust the low end output (zero adjustment) or the high end output (span adjustment).

Typically, these screws are located on the PCB inside the sensor body. If you want to adjust the output, you need to follow these steps:

Turn on the sensor without disconnecting the PCB output port.
Accurately apply zero and full scale pressure to the sensor. (A minimum ±0.1% full scale accuracy of applied pressure is recommended.)
Connect the sensor to appropriate power and monitoring equipment to verify the output of the pressure sensor.
Adjust the zero output first, then adjust the full scale output.
Tools such as DC power supply, multimeter, pressure comparator are required.

  1. Electromagnetic based calibration
    Instead of using potentiometers, some pressure sensors use magnets for decay. Magnet-based calibration comes in two flavors: magnet and shunt calibration (often called shunt calibration).

A small magnet is usually placed near the top or bottom of the pressure sensor to increase or decrease (respectively) the zero output of the pressure sensor. Generally speaking, the full-scale output of this type of sensor can usually only be adjusted by the factory. If you want to adjust, you need to follow the steps below:

Precisely apply zero pressure to the sensor. (We recommend a full-scale accuracy of at least ±0.1% of applied pressure.)
Connect the sensor to appropriate power and monitoring equipment to verify sensor output.
To turn down the zero output, hold the magnet perpendicular to the lower end of the device.
To turn up the zero output, hold the magnet perpendicular to the upper end of the device.
If the zero output is 0 (eg, 0 VDC, 0 mV, etc.), the magnet adjustment of the zero output can be a bit of a hassle. When the zero output is non-zero, on a 1-5 VDC sensor, the actual value is less than the zero output (0.995 VDC, 0.85 VDC), so you can tell when the value is adjusted too far and the output needs to be restored. When the zero output is 0, there is no that extra buffer below the zero output and can be adjusted to a value that can only be pulled back by the factory.

  1. Calibration with software
    It should be easy to adjust the zero and full scale outputs for sensors connected to monitoring software. For example, software that controls a 4-20 mA sensor might have a 4 mA calibration setting and a 20 mA calibration setting. In this way, software control does what shunt calibration and previous calibration techniques do: it adjusts the sensor’s output, as well as controls the device’s reading of the output.

To calibrate a software-controlled sensor, follow these steps:

Connect the sensor to the control software
Accurately apply zero and full scale pressure to the sensor. (A minimum ±0.1% full scale accuracy of applied pressure is recommended.)
Using the software, adjust the zero and full scale output calibration variables until the corresponding output from the sensor is correct.

Pressure sensors are generally divided into two-wire, three-wire, four-wire, and some five-wire systems.

The two-wire system of the pressure sensor is relatively simple, and ordinary users know how to wire it. One is connected to the positive pole of the power supply, and the other wire is connected to the negative pole of the power supply through the meter. This is the simplest.

The three-wire pressure sensor is to add a line on the basis of the two-wire system. This line is directly connected to the negative pole of the power supply, which is more troublesome.

The four-wire pressure sensor has two power input terminals. The other two are signal output terminals. Most of the four-wire systems are voltage outputs. Instead of 4~20mA output. 4~20mA is called pressure transmitter, most of which are two-wire system.

The signal output portion of the pressure sensor is not amplified. The full-scale output is only tens of millivolts. Some sensors have an internal amplifier circuit, and the full-scale output is 0~2V.

For how to connect the display meter, it depends on the range of the meter. If there is a gear suitable for the output signal, you can measure it directly. Otherwise, you need to add a signal conditioning circuit. The five-wire pressure sensor is different from the four-wire type, and there are fewer five-wire pressure sensors on the market.

Read more about: What Is 0-10V Signal Output?

Related pressure measurement solutions

Steam Pressure Transmitter

Steam pressure transmitters are widely used in the measurement and control of various high-temperature steam piping…

Cryogenic Pressure Transducers

Cryogenic pressure transducer for low temperature pressure measurement.  -196℃~+125℃、-260℃/-350c(especial). Sino-Inst offers a variety of Pressure Sensors…

Capacitive pressure transducer

What is the capacitive pressure transducer? The capacitance pressure transmitter is a pressure measurement device, which…

Extended reading: Hydrostatic Pressure Transmitter

Sino-Inst offers over 20 air pressure transducers. A wide variety of air pressure transducer options are available to you. Such as free samples, paid samples. Sino-Instrument is a globally recognized manufacturer of air pressure transducers, located in China.

Sino-Inst sells through a mature distribution network that reaches all 30 countries worldwide. Air pressure transducer products are most popular in Europe, Southeast Asia, and Mid East. You can ensure product safety by selecting certified suppliers. With ISO9001, ISO14001 certification.

Steam Pressure Transmitter

Steam pressure transmitters are widely used in the measurement and control of various high-temperature steam piping systems. The monitoring of steam pipes is very important. To measure the pressure of steam pipes, have you encountered the following problems:

  • Don’t know which pressure transmitter to choose?
  • Is it good to use a high-temperature pressure transmitter to measure the pressure of the steam pipe?
  • The core of the pressure transmitter removed at the steam site. The diaphragm has been dented by the impact. Is it scrapped directly?
  • How to choose the type and what should be paid attention to when measuring the steam pipeline?

Steam pressure transmitter performance

  • The tested medium is widely used. It can test steam, oil, water, and pastes compatible with 316 stainless steel and 304 stainless steel. It has a certain anti-corrosion ability.
  • High accuracy, high stability, use imported original sensors. Good linearity. High temperature resistance and high stability.
  • Small size, light weight, easy to install, debug and use
  • Stainless steel fully enclosed shell, good waterproof.
  • The pressure transmitter directly senses the pressure of the measured liquid level and is not affected by the bubbling and deposition of the medium.
  • The overall performance in the industrial field is ±0.15%, so that the loop performance is optimized
  • Five-year stability ±0.15%, which can greatly reduce the cost of calibration and maintenance
  • Faster dynamic response reduces process variability
  • The introduction of technology can realize a comprehensive measurement plan
  • Local/external: zero/range adjustable

Extended Reading: Smart pressure transmitter

Related Products:

SI-702 High Pressure Sensor
High pressure sensor is pressure transmitter designed for high pressure measure&control. 0 ~ 40MPa… 600MPa. M20 × 1.5, G1 / 2 (others are customized according to requirements)
SI-702S Ultra-High Pressure Senors
Pressure sensor for Ultra high pressure applications. Ultra high pressures up to 15,00MPa. 0-2000MPa to 0-7000MPa (customized).Ball head M20 × 1.5, cone head M20 × 1.5.
SI-512H High Temperature Pressure Sensor
High Temperature Pressure Sensor for pressure measurement of high temperature gas or liquid. Such as steam pressure. High temperature up to 800 ℃.
SIJC-1000HSM-Silicon Pressure Sensor
Silicon pressure sensor, also known as Diffused silicon pressure sensor. Silicon pressure sensors are low cost.
SI-706 Combined Pressure and Temperature Sensor-Dual function
Combined pressure and temperature sensor for Simultaneous measurement of pressure and temperature.
Thermocouple types: J, K, E type or PT100 platinum resistance. Two outputs do not affect each other. 

Extended reading: Featured Diaphragm Seal Pressure Transmitters

Steam pressure transmitter installation

  1. When wiring, pass the cable through the waterproof connector (accessory) or flexible tube and tighten the sealing nut to prevent rainwater from leaking into the transmitter housing through the cable.
  2. Prevent the pressure transmitter from contacting corrosive or overheated media;
  3. When measuring the liquid pressure, the installation position of the transmitter should avoid the impact of the liquid (water hammer phenomenon) to avoid damage to the sensor overpressure;
  4. When measuring the liquid pressure, the pressure port should be opened on the side of the processing pipeline to avoid precipitation and slag;
  5. When measuring gas pressure, the pressure tap should be opened at the top of the process pipeline. The transmitter should also be installed on the upper part of the processing pipeline. So that the accumulated liquid can be easily injected into the processing pipeline;
  6. Prevent dross from depositing in the duct;
  7. When measuring steam or other high-temperature media, a buffer tube (coil) and other condensers should be connected. The working temperature of the pressure transmitter should not exceed the limit;
  8. When freezing occurs in winter, the transmitter installed outdoors must take anti-freezing measures. Avoid volume expansion of the liquid in the pressure inlet due to icing, leading to damage to the sensor;
  9. The pressure guiding tube should be installed in a place with small temperature fluctuations;

Read more about: What is a pressure sensor and how it works? 

What should be paid attention to when measuring the pressure on the steam pipeline?

Pressure transmitters are used for steam metering and pipeline monitoring.

The temperature in the steam pipeline is generally relatively high. The low is more than one hundred degrees Celsius, and the high is two to three hundred degrees Celsius.

The start and stop of the valve will also cause the pressure in the pipeline to fluctuate.

Today we are going to talk to you about what to pay attention to when measuring the pressure of steam pipes?

When measuring the pressure of the steam pipeline, a high-temperature pressure transmitter should be selected due to the high-temperature environment.

In fact, in steam conditions, it only needs to pass through the surface bend (condensation tube). After passing through the elbow, the steam will condense into water at the elbow. Insulate the temperature, so as to achieve a good cooling effect.

The pressure transmitter after passing through the elbow on the pipeline with insulation layer is basically at room temperature. If it is not insulated, the high temperature will rise, causing the temperature of all objects above the pipeline to rise.

Advantages: The use of bends can optimize the cost, and is compatible with the product.

The material selection of a good bend is high. It is thicker and more durable than the general watch bend on the market. Good pressure resistance. The price will be slightly more expensive.

Extended Reading: FMCW Radar for High Temperature Level Sensor

The above-mentioned pressure transmitter diaphragm damage is due to the phenomenon of water hammer.

The valve suddenly opens or closes, causing the pressure in the steam pipe to fluctuate suddenly.

Especially when the valve is opened, huge pressure fluctuations will cause the pipeline to vibrate violently. Even shocking.

The pressure transmitter will also withstand huge pressure in the pipeline. In severe cases, the core may be dented or even burst.

The prevention method is to install safety valves and accumulators, and open and close the valves slowly. Install a trap at the high point of the air discharge valve at the low point.

Some pressure transmitters will be protected by dampers and baffles.

The damper is a copper piece with a 4mm outer wire and a T-shaped thin through-tube structure inside. It can prevent the medium from directly impacting the diaphragm.

The baffle is placed on the front end of the core before assembling the core. Metal plate with holes. It also prevents the medium from directly impacting the diaphragm.

In the hydraulic machinery industry, there are a lot of equipment for pressure transmitters, which are often used for pressure control.

But hydraulic machinery is very prone to pressure shock when it is working. The shock pressure will far exceed the normal pressure, causing damage to the pressure transmitter.

In this case, some pressure transmitters have internal wires and dampers in the standard pressure port. Can effectively alleviate the impact.

The hydraulic and mechanical pressures are all above 10MPa. Generally, the transmitter above 10MPa should be equipped with a damper as standard. If the pressure shock is severe, a baffle can be added to alleviate the shock.

Extended Reading: Electronic Pressure Switch for Air Compressor

Extended Reading: Up to 800°C High Temperature Pressure Sensor

You may like:

Capacitive pressure transducer

What is the capacitive pressure transducer? The capacitance pressure transmitter is a pressure measurement device, which…

Extended Reading: Digital Pressure Sensor-RS485

Sino-Inst offers over 10 Steam Pressure Transmitters. A wide variety of  Steam Pressure Transmitter options are available to you. Such as free samples, paid samples.

Sino-Inst is a globally recognized manufacturer of Steam Pressure Transmitters, located in China. Sino-Inst sells through a mature distribution network that reaches all 30 countries worldwide. Steam Pressure Transmitter products are most popular in Europe, Southeast Asia, and Mid East. You can ensure product safety by selecting certified suppliers. With ISO9001, ISO14001 certification.

Cryogenic Pressure Transducers

Cryogenic pressure transducer for low temperature pressure measurement.  -196℃~+125℃、-260℃/-350c(especial).

The Cryogenic pressure transducer adopts a stainless steel integrated packaging structure, and the pressure-sensitive diaphragm adopts an excellent special design. It works safely and stably in an ultra-low temperature -196℃ environment. Used for cryogenic scientific experiments such as liquid oxygen/liquid nitrogen/liquid hydrogen/cooling tank/recommendant/low temperature storage tank.

Sino-Inst offers a variety of Pressure Sensors for pressure measure and control. If you have any questions, please contact our sales engineers.

What is Cryogenic pressure transducer?

The Cryogenic pressure sensor adopts a stainless steel integrated packaging structure, and the pressure-sensitive diaphragm adopts a special design. This can make the sensor work stably in an ultra-low temperature -196 degrees Celsius environment.

Its advantages are small size and extremely high measurement accuracy. It brings convenience to scientific research work, high dynamic response frequency, strong corrosion resistance and long working life.

Even if the purchase cost is high, the later use value is much higher than its own value. In the future of technological development, low-temperature pressure sensors will be used more and more widely.

Read more about: What is industrial pressure transmitter?

Features of Cryogenic Pressure Transducer

  • 0-5vdc, 0-10vdc, 4-20mA Signal output optional
  • -196℃~+125℃、-260℃/-350c(especial)
  • Stainless Steel Construction
  • IP65 or IP67 enclosure
  • Product range: 0-2000bar

Extended reading: cryogenic fuel level indicator

Parameters of Cryogenic Pressure Transducer

Product range: 0-2000bar
Temperature: -196℃~+125℃, -260℃/-350c (especial)
Signal output: mv, 0-5vdc, 4-20mA, Hart, Rs485
Range: 0~0.2MPa…15MPa…60MPa Pressure type: absolute pressure, gauge pressure
Working voltage: 5-15VDC (10VDC) / 9-36vdc
Signal output: 0-5vdc, 0-10vdc, 4-20mA
Zero output: ±5%FS (typical)
Full load output: 10mV, 20mV, 100mV option
Linearity: 0.1%FS, 0.2%FS
Repeatability: 0.05%FS
Accuracy: ±0.25% FS, ±0.5% FS (default)
Room temperature: 0.1% FS, 0.2% FS, 0.5% FS
Low temperature: 0.5% FS% ~ 3% FS
Working temperature: -196℃~+125℃, -260℃/-350c (especial)
Low temperature zero drift: 1 ~ 4% FS (full-temperature zone)
High temperature zero drift: 1 ~ 4.5% FS (full-temperature zone)
Response frequency:> 1kHz or> 5kHz optional
Insulation resistance: ≥ 100MΩ/50V
Safe overload: 150% FS (1.5 times full scale)
Limit overload: 300% FS (3 times the full scale)
Vibration: 5 ~ 1000Hz, amplitude 2mm, X, Y, Z each to 30 minutes, the output changes less than 0.1% FS
Thread: M3, M4, M5, M6, M8, M10, M12 × 1 or a designated
Measuring medium: liquid oxygen/liquid nitrogen/liquid hydrogen, etc.
Humidity: 95% RH
Waterproof rating: IP65 or IP67 enclosure

Extended reading: Pressure indicator transmitters

Application of Cryogenic pressure transducer

Cryogenic pressure transducer has small size, high measurement accuracy, high dynamic response frequency, strong corrosion resistance and long working life.

Our professional technical group provides you with customized services. This product is mainly used for: low temperature scientific experiment, liquid

Oxygen, liquid nitrogen, liquid hydrogen, liquid helium, etc. Pressure and low temperature measurement of cooling tanks, cryogenic storage tanks, propellants, etc.
Cryogenic storage tanks for aerospace, aviation, naval vessels, etc.

If you need to measure not liquefied nitrogen and liquefied oxygen, but gas nitrogen and oxygen. You can refer to:

Industrial oxygen flow meters Nitrogen flow measurement

Extended reading: Cryogenic Flow Meters | Liquid Nitrogen-Liquid Oxygen

More Featured Pressure Transmitters

Extended Reading: Resistive Pressure Transducer

Sino-Inst offers over 20 Pressure sensors. A wide variety of  Pressure sensors options are available to you. Such as free samples, paid samples. Sino-Instrument is a globally recognized manufacturer of Pressure sensors, located in China.

Sino-Inst sells through a mature distribution network that reaches all 30 countries worldwide. Pressure sensors products are most popular in Europe, Southeast Asia, and Mid East. You can ensure product safety by selecting from certified suppliers. With ISO9001, ISO14001 certification.

Request a Quote

Please enable JavaScript in your browser to submit the form

High Frequency Dynamic Pressure Sensor

Dynamic pressure sensor, the transmitter is a high frequency sensor.

The high frequency dynamic pressure sensor adopts silicon stack silicon technology. At the same time, it has high responsiveness. At the same time, it also has high accuracy in low frequency or static data. The high-frequency dynamic pressure sensor has its own hybrid temperature compensation, and the special processing can reach 2000℃ instantaneously. It can provide stable performance in a wide temperature range, with good linearity, high natural frequency, short rise time and wide excellent response frequency band.

Sino-Inst offers a variety of  Dynamic Pressure Sensors for pressure measurement. If you have any questions, please contact our sales engineers.

Features of High Frequency Dynamic Pressure Sensor

  • Wide measuring medium range
  • Wide pressure measurement range
  • High natural frequency up to 2MHz
  • Stable work
  • Strong anti-interference ability
  • Original imported components, reliable performance.
  • Small size, light weight, complete types, high cost performance

Read more about: What is a pressure sensor and how it works? 

Specifications of High Frequency Dynamic Pressure Sensor

Measuring range-100KPa~0~10KPa…200KPa…1MPa…100MPa
Type of pressureGauge pressure, absolute pressure, negative pressure
Long-term stabilityTypical: ±0.1%FS, maximum: ±0.2%FS/year
Comprehensive accuracy≤±0.25%FS, 0.5%FS
(Comprehensive accuracy includes: linearity + repeatability + hysteresis)
Overload pressure2 times full scale pressure
(100MPa product overpressure is 1.1 times full scale pressure)
Ambient temperature-20 … +85℃
Medium temperature-40 … +85℃, special can be -10℃~200℃
Vibration influence≤±0.01%FS (X, Y, Z axis, 200Hz/g)
Load Resistance≤(U-12)/0.02Ω
Natural frequency150KHz~2MHz
Transmitter frequency response0~1KHz~200KHz
Rise Time0~1mS~2μS
Zero temperature driftTypical: ±0.02%FS/℃, maximum: ±0.05%FS/℃
Sensitivity temperature drift±0.02%FS/℃, maximum: ±0.05%FS/℃
ResolutionInfinitely small in theory, usually 1/100000
MediumGas or liquid compatible with 316 stainless steel
Power supplyTransmitter power supply: 12~36VDC (generally 24VDC),
±15VDC switching power supply or linear power supply
Sensor power supply: constant current: 1mA~4mA;
constant voltage: 5VDC~24VDC
Signal outputAnalog: 4~20mA, 1~5 V DC, 0~10VDC, 0~5V DC
Sensor output: 1.5mV~15mV/V
Insulation resistance100MΩ, 500VDC
Electrical protectionReverse polarity protection, anti-electromagnetic interference
Liquid contact material316L stainless steel
shell material304 stainless steel
Process connectionM20*1.5, G1/4, flush film, other threads can be designed according to customer requirements
Electrical connectionThe cable is IP67 and the connector connection is IP65
weight0.25KG

You may like: How does a pressure transmitter work?

Applications of High Frequency Dynamic Pressure Sensor

  • Military engineering
  • Chemical explosion test
  • Petroleum prospecting and well testing
  • Fluid mechanics
  • Internal combustion engine system
  • aerodynamics
  • Scientific tests such as hydraulic power machinery test
  • Chemical explosion test

Read more about: What is industrial pressure transmitter?

More Featured Pressure Sensors

SI-303 Low-Pressure Transducer
Low pressure transducers for air and non-corrosive gases low pressure measurement. 0 ~ 2.5kPa to 0 ~ 30kPa measurable.
SI-350 Sanitary Pressure Transmitter
Sanitary Pressure Transmitter, also called tri clamp pressure transmitter,
is the pressure transducer with the flush diaphragm (flat membrane) as the pressure sensor.
SI-300 Pressure Transducer 4-20mA/Voltage
The 4-20mA/ Voltage Pressure Transducer,
also called pressure transmitter 4-20mA,
is a pressure sensor with4-20ma/Voltage output.
SI-390 Industrial Pressure Transmitter
Pressure transmitters for general industrial applicaitons. -0.1kPa ~ 0 ~ 0.01kPa ~ 100MPa ~150MPa. 0.1% FS, 0.25% FS, 0.5% FS. 4-20mA (2-wire system), 0-5 / 1-5 / 0-10V (3-wire system)
SI-512H High Temperature Pressure Sensor
High Temperature Pressure Sensor for pressure measurement of high temperature gas or liquid. Such as steam pressure. High temperature up to 800 ℃.

SIJC-1000HSM-Silicon Pressure Sensor
Silicon pressure sensor, also known as Diffused silicon pressure sensor. Silicon pressure sensors are low cost.
SI-706 Combined Pressure and Temperature Sensor-Dual function
Combined pressure and temperature sensor for Simultaneous measurement of pressure and temperature.
Thermocouple types: J, K, E type or PT100 platinum resistance. Two outputs do not affect each other. 
SI-338 Ceramic Pressure Sensor
Ceramic pressure sensor is a pressure sensor refined from a thick ceramic base using a refined ceramic base. Cost-effective. Support OEM processing. 0-0.2MPa -…- 40MPa

Extended reading: Static pressure vs dynamic pressure vs total pressure

More Solutions for pressure measurement

Extended Reading: Digital Pressure Sensor-RS485

Sino-Inst offers over 20 Pressure sensors. A wide variety of  Pressure sensors options are available to you. Such as free samples, paid samples. Sino-Instrument is a globally recognized manufacturer of Pressure sensors, located in China.

Sino-Inst  sells through a mature distribution network that reaches all 30 countries worldwide. Pressure sensors products are most popular in Europe, Southeast Asia, and Mid East. You can ensure product safety by selecting from certified suppliers. With ISO9001, ISO14001 certification.