MEMS pressure sensors are pressure sensors manufactured using MEMS technology. MEMS pressure sensors include silicon piezoresistive pressure sensors and silicon capacitive pressure sensors.

MEMS Pressure Sensors

MEMS pressure sensors are the earliest developed miniature sensors with a large market share. MEMS pressure sensors can be divided into piezoresistive and capacitive types. Both are micromechanical electronic sensors generated on silicon chips. MEMS pressure sensors can use high-precision, low-cost mass production with integrated circuit-like design techniques and manufacturing processes. This makes pressure control simple, easy to use, and intelligent. Compared with traditional mechanical quantity sensors, the size of MEMS pressure sensors is smaller, and the largest is no more than one centimeter. Compared with traditional “mechanical” manufacturing technology, its cost performance is greatly improved.

Sino-Inst offers a variety of MEMS pressure senors for industrial pressure measurement. If you have any questions, please contact our sales engineers.

Industrial Pressure Sensor for OEM applications
High Temperature Pressure Sensor
Combined Pressure and Temperature Sensor-Dual function
High Pressure Sensor
Gauge Pressure Transmitter/Transducer
Hydrostatic Pressure Sensor/Transmitter
Differential pressure(DP) level transmitter

Features of MEMS Pressure Sensors

  • Single crystal silicon sensor using German MEMS technology
  • Integrated sensor design using patented technology
  • Two-wire system. 4 ~ 20mA analog output. HART® digital communication or four-wire system. RS485 output (MODBUS protocol)

Read more about: What is a pressure sensor and how it works? 

Specifications of MEMS Pressure Sensors

RangeMinimum rangeDPRange and sensor limit (kPa)Minimum rangeGPRange and sensor limit (kPa)Minimum rangeAPRange and sensor limit (kPa)
Code(kPa)Upper range (URL)Lower limit of range (URL)(kPa)Upper range (URL)Lower limit of range (URL)(kPa)Upper range (URL)Lower limit of range (URL)
10.11-1//////
20.25-5//////
30.220-200.220-20///
40.550-500.550-500.5500
52200-2002200-10022000
65500-5005500-100///
7202000-500202000-1002020000
810010000-50010010000-100100100000
9///40040000-100///
Measuring range of MEMS pressure sensor
  1. Sensor type: German MEMS technology single crystal silicon sensor
  2. Range ratio: 100: 01: 00
  3. Accuracy grade: 0.075, 0.1, 0.2
  4. Stability: 36 months error is ± 0.2% of maximum range
  5. Temperature effect:
    1. “0.075 level: zero point or range error is ± 0.15% / 28 ℃ of maximum range
    2. 0.1 level: Zero point or range error is ± 0.2% / 28 ℃ of maximum range
    3. Level 0.2: Zero point or range error is ± 0.25% of maximum range / 28 ℃ “
  6. Output signal: “Two-wire system, 4 ~ 20mA DC, HAR T® protocol digital signal. Or four-wire system, RS485 output (MODBU S protocol)”
  7. Metrology certification: CMC
  8. Explosion-proof certification: “Explosion-proof type: Exd IIC T6 Gb
                 Intrinsically safe type: Exia IIC T6 Ga or Exib IIC T4 Gb “
  9. Protection grade: IP67

You may like: Explosion Proof Pressure Transmitter for Hazardous locations

What does MEMS mean?

MEMS is the abbreviation of Micro-Electro-Mechanical Systems. MEMS is the name of the United States. In Japan, it is called micromachine. In Europe, it is called microsystem. MEMS refers to mass production, which integrates micro-mechanisms, micro-sensors, micro-actuators, signal processing and control circuits, and interfaces. , Communication and power supply are equal to a micro device or system. MEMS is developed with the development of 1653 technology for semiconductor integrated circuit micromachining and internal ultra-precision mechanical processing technology. Currently MEMS processing technology is also widely used in microfluidic chips and synthetic biology. Chip integration of the technical process of the actual volume laboratory.

What is a MEMS pressure sensor?

MEMS pressure sensor is a pressure sensor manufactured by MEMS technology.
MEMS pressure sensors are the earliest developed miniature sensors with a large market share. The current application field has been greatly expanded, far beyond the traditional applications in industrial transmitters and other fields. Generally, MEMS pressure sensors are made by bulk silicon processing technology, and some are made by surface silicon processing technology. MEMS pressure sensors can be divided into piezoresistive and capacitive. Similar to other sensors, the MEMS pressure sensor converts the pressure into an electrical signal output during operation.

Extended Reading: Digital Pressure Sensor-RS485

Piezoresistive MEMS pressure sensor

The piezoresistive MEMS pressure sensor uses a high-precision semiconductor resistance strain gauge to form a Wheatstone bridge as a force-electric conversion measurement circuit. It has high measurement accuracy, low power consumption, and extremely low cost.

Capacitive MEMS pressure sensor

Capacitive pressure sensors use MEMS technology to produce a diaphragm grid on the silicon wafer. The upper and lower diaphragms become a group of capacitive pressure sensors. The upper diaphragm is displaced downward by pressure and changes the upper and lower diaphragms. The spacing of the grids also changes the capacitance between the plates, that is, △ pressure = △ capacitance

Read more about: Capacitive pressure transducer

How does a MEMS pressure sensor work?

How does a MEMS pressure sensor work?

The MEMS piezoresistive pressure sensor uses a circular stress cup silicon film inner wall fixed around the periphery. MEMS technology is used to directly engrave four high-precision semiconductor strain gauges on the surface with the highest stress. Make up the Wheatstone measuring bridge. As a force-electricity conversion measurement circuit. The physical quantity of pressure is directly converted into electricity. The measurement accuracy can reach 0.01% ~ 0.03% FS.

You may like: How does a pressure transmitter work?

The MEMS capacitive pressure sensor uses MEMS technology to produce a diaphragm grid on the silicon chip. The two upper and lower diaphragms become a group of capacitive pressure sensors. The upper MEMS capacitive pressure sensors use MEMS technology to create a grid-like shape on a silicon wafer. The two upper and lower transverse barriers become a group of capacitive pressure sensors. The upper diaphragm is displaced downward by pressure. Changed the spacing between the upper and lower two horizontal barriers. It also changes the size of the capacitance between the boards.

Video on How MEMS Pressure Sensor Operation:

Video source: https://www.youtube.com/watch?v=juf4d3sgOJw

Applications of MEMS Pressure Sensors

  1. Applied in the automotive industry
    A new application of MEMS pressure sensors in automobiles is the transmission system pressure sensing. It is usually used in automatic devices. But it is also used in new dual clutch transmission systems. German manufacturers have introduced a MEMS solution that uses oil to protect the silicon film so that it can withstand pressures up to 70 bar. Bosch also brought huge changes to MEMS pressure sensors a few years ago. At that time, porous silicon was used to bring highly reliable MEMS devices. These devices have been used in current side airbag applications.
  2. Applied to the medical market
    The pressure sensor mainly serves as a disposable low-cost catheter for surgical operations. But they are also used in expensive equipment. Sensing pressure and differential flow in continuous positive airway pressure (CPAC) machines.
  3. Applied in the industrial field
    The main applications of MEMS pressure sensors include heating, ventilation and air conditioning (HVAC), water level measurement, and various industrial process and control applications. For example, in addition to accurate altitude and barometric pressure measurements, aircraft use sensors to monitor engines, flaps, and other components.

Extended reading: What is a pressure sensor?

Frequently
Asked
Questions

Depending on the type of pressure to be measured:
Pressure transmitter types include gauge pressure, absolute pressure, and differential pressure. Gauge pressure refers to the pressure that is less than or greater than atmospheric pressure based on the atmosphere. Absolute pressure refers to the absolute zero pressure as the reference and is higher than the absolute pressure. Differential pressure refers to the difference between two pressures.
According to the working principle of the pressure transmitter:
Strain Gauge Pressure Transducers
Capacitance Pressure Transducers
Potentiometric Pressure Transducers
Resonant Wire Pressure Transducers

First of all, the parameters that must be seen when purchasing a pressure transmitter are:
Pressure range. Range. Measurement medium. Installation method-threaded flange clamps, etc. Installation dimensions. Temperature. Whether with display. Whether with HART protocol. Output type. Current output or voltage output. Explosion-proof level, protection level. Accessories. Mounting bracket.
The above parameters will affect the price of the pressure transmitter.
Sino-Inst, as the manufacturer of pressure transmitter, offer you with the best price.

At present, there are mainly two types of MEMS pressure sensors: silicon piezoresistive pressure sensors and silicon capacitive pressure sensors. Both of these are micro-mechanical electronic sensors produced on silicon chips.

The first type: silicon piezoresistive pressure sensor

The silicon piezoresistive pressure sensor uses a Wheatstone bridge composed of high-precision semiconductor resistance strain gauges as the measurement circuit for electromechanical conversion. It has the advantages of high measurement accuracy, low power consumption, and low cost. The output of the piezoresistive sensor in the wheatstone bridge is zero. If there is no pressure change, there is almost no power consumption.

The MEMS silicon piezoresistive pressure sensor is the inner wall of a silicon membrane with a circular stress cup fixed around it. Using MEMS technology, four high-precision semiconductor strain gauges are directly engraved on the place with the largest surface stress to form a Wheatstone measurement bridge. As an electromechanical conversion measurement circuit, it directly converts the physical quantity of pressure into electrical energy. Its measurement accuracy can reach 0.01-0.03%FS.

The second type: capacitive pressure sensor

The capacitive pressure sensor uses MEMS technology to make a horizontal grid shape on a silicon wafer. The upper and lower horizontal grids form a set of capacitive pressure sensors. The upper horizontal grid moves downward under pressure to change the distance between the upper and lower horizontal grids and the capacitance between the plates, that is Pressure = Capacitance.

MEMS pressure sensors can adopt the design technology and manufacturing process similar to integrated circuits, so as to carry out high-precision, low-cost mass production, and have a wide range of applications in ventilators, automobiles, earphones, mobile phones and other fields.

More Pressure Measurement Solutions

Flow Pressure Transducers for Fluid Pipelines

Flow Pressure Transducers are measurements of fluid pressure within a pipeline. When fluid flows through a pipe, pressure acts on the pipe wall. The medium in the pipeline can be liquid or gas.Measure the pressure of the fluid, on the Read More

Difference in Details: Pressure Transmitter vs Pressure Gauge

Do you know the difference between Pressure Transmitter vs Pressure Gauge? Pressure transmitters and pressure gauges are industrial process instruments used to measure the pressure of media.Understanding the difference between Pressure Transmitter vs Pressure Gauge is something we should do Read More

Water Pressure Sensors for Measurement of Water Pressure

Water Pressure Sensors Water Pressure Sensors refers specifically to instruments used to measure the pressure of tanks, pipes or underground water. Also called Water Pressure Transducers, or Water Pressure transmitters. Commonly used Water Pressure Sensors generally purchase diffused silicon. Convert Read More

Pressure Sensor Applications-Featured Industry Applications

Pressure Sensor Applications refer to industrial pressure transmitters that convert gas, liquid and other pressure parameters into standard electrical signals (such as 4~20mADC, etc.). For on-site or remote measurement and control. Pressure sensors are arguably the most widely used sensors Read More

Pressure Transducer Wiring: 2 Wire-3 Wire-4 Wire

Pressure Transducer Wiring refers to the electrical connection of the pressure transmitter. A pressure transmitter is a conversion device that converts pressure signals into analog signals or digital signals. Generally, except for wireless pressure transmitters, the others are used for Read More

High Accuracy Pressure Transducers

High Accuracy Pressure Transducers are also called high precision pressure transducers or high accuracy pressure sensors. Sino-Inst manufactures various types of High Accuracy Pressure Transducers. From the perspective of accuracy, the accuracy of conventional pressure transmitters is 0.5%. Therefore, pressure Read More

Sino-Inst offers over 20 MEMS Pressure Sensors. About 50% of these are 4-20ma Low-Pressure Transducers, 40% are Differential Pressure Gauge, and 20% are Diaphragm Seal Pressure transmitters, 20% are 4-20ma differential pressure transmitters.

A wide variety of MEMS Pressure Sensors options are available to you, such as free samples, paid samples. Sino-Inst is a globally recognized supplier and manufacturer of Pressure Transducers, located in China.

You can ensure product safety by selecting from certified suppliers, with ISO9001, ISO14001 certification.

Request a Quote

Leave a Reply

Your email address will not be published. Required fields are marked *